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Abstract—This paper focuses on the system on wireless 

sensor networks. The system is linear and the time of the 

system is discrete as well as variable, which named discrete-

time linear time-varying systems (DLTVS). DLTVS are 

vulnerable to network attacks when exchanging information 

between sensors in the network, as well as putting their 

security at risk. A DLTVS with privacy-preserving is designed 

for this purpose. A set-membership estimator is designed by 

adding privacy noise obeying the Laplace distribution to state 

at the initial moment. Simultaneously, the differential privacy 

of the system is analyzed. On this basis, the real state of the 

system and the existence form of the estimator for the desired 

distribution are analyzed. Finally, simulation examples are 

given, which prove that the model after adding differential 

privacy can obtain accurate estimates and ensure the security 

of the system state. 

Keywords- Set-membership estimator; wireless sensor 

networks; privacy-preserving; unknown but bounded noise  

I.  INTRODUCTION  

The structure formed by sensor nodes in free-form 
combination via wireless communication technology is a 
wireless sensor network(WSN) [1,2], which senses, collects, 
processes and transmits information about target objects in 
the network, mainly through a collaborative approach. In 
recent years it has been widely used in the field of electrical 
automation[3], aviation[4] and positioning[5]. 

Due to the limitations of their communication capabilities, 
sensors can only sense partial information, so achieving 
effective data collection as well as efficient distributed 
processing becomes a challenge. In practical WSN, the 
sensor sensing process will be affected by noise, such as 
process noise and measurement noise, but users are more 
interested in processed sensory information, so scholars have 
done a lot of research on the processing estimation of 
information, most notably are Kalman filtering estimation 

and H filtering estimation. 
Kalman filtering is a processing technique for removing 

noise from sensor sensory data to obtain the actual data. It is 
essentially an estimate of actual data based on observed data. 
Since the process of estimating the state is the process of 
removing noise, the optimal estimation process can also be 
referred to as the filtering process. In [6], an improved 
Kalman filtering algorithm based on a traceless Kalman 

filtering and a particle filtering is proposed. In [7], a security 
estimation method combining a security estimator and a 
Kalman filtering is used, where the attacked nodes are time-
varying. In [8], the communication burdens, computational 
burdens and their scalability are analyzed to further 
generalize the characteristics of the non-Kalman filtering 
case based on the constructed filters. In [9], a distributed 
Kalman filtering with greater fault tolerance is developed for 
multi-sensor uncertain systems. Thus Kalman filtering can 
yield accurate estimation in linear models, but it is unoptimal 
estimation in non-linear models. 

Kalman filtering is somewhat limited when the system 

model, system structure or noise is uncertain. The H  
filtering results are more stable, robust and accurate. No 
assumptions need to be made about uncertainties or 

perturbations, and in the worst case, the H filtering still 
minimizes the estimation error. In [10], the distributed   

H  for systems with stochastic delays is investigated. In 
order to avoid the use of transcendental equations during 
solution, a filter is designed that keeps the system mean 

square exponent stable despite the decay of the H filtering 
disturbances. In [11], an algorithm is designed for the 
coupled random complex networks. For coupled random 
complex networks, it can resist random disturbance. Thus 

H filtering can yield accurate estimates in the presence of 
uncertainty for the system model with noise. However, in 
practical applications, it is difficult to satisfy the assumptions 

when applying Kalman filtering or H  filtering for 
estimation. 

In practice, when a model of estimating the parameters, it 
is assumed the noise of the characteristics to demonstrate the 
convergence of the system. However if the noise is not 
random in nature, it is difficult to confirm whether the 
statistical judgments about the noise are consistent with 
reality, so the assumptions made about the noise are not 
satisfied. Using traditional estimation models, e.g. Kalman 

filtering or H  filtering, the accuracy of the estimation is 
compromised, so parameter estimation can be performed 
using setter estimates that describe the system model using 
measured data, model structure and noise bounds. In [12,13], 
set-membership estimation methods for discrete-time 
nonlinear systems are discussed. For the minimization 
problem of estimating ellipsoid trajectories, an optimization 
algorithm is designed. 
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At the same time, complex networks are being used on a 
large scale and network security is under threat. The security 
of data information is gradually becoming a major obstacle 
to smooth network communication, and the openness of the 
data interaction channel of sensor nodes makes the network 
system more vulnerable to attacks [14]. Thus the issue of 
data privacy in the network has also become a key issue for 
scholar to study. Privacy protection has gradually become a 
hot topic in the study of data security. Adding privacy 
protection can ensure that the real data information of the 
initial state is not leaked, so that the security of the 
information is guaranteed. In [15] the differential privacy 
problem of discrete-time multi-intelligent network systems is 
studied. A new distributed differential privacy problem is 
proposed and its convergence, accuracy and privacy are 
analyzed, where the privacy of state at the initial moment is 
preserved during the information interaction. In [16], a new 
fractional order estimation error method is developed based 
on the consideration of random network attacks, in addition 
to the design of an expectation non-fragile state estimator.  In 
order to obtain accurate estimation of unknown parameters 
based on the system security, the distributed filtering method 
containing privacy protection needs further research. 

Intentionally, this paper mainly studies DLTVS 
containing privacy protection. The main innovations of the 
method proposed include: firstly, privacy noise obeying 
Laplace distribution is introduced to state at the initial 
moment to achieve the purpose of protecting state at the 
initial moment and to analyze its privacy. Secondly, the set-
membership estimator is designed to obtain accurate 
estimates despite the unknown but bounded (UBB) noise 
property. Finally the expectation estimates are analyzed by 
means of a recursive convex optimization algorithm, 
ensuring that actual values are always included within the 
estimated range. 

Each part of this paper works as follows. Section II 
models a distributed set-membership estimation method on 
WSN, which affected by privacy protection noise as well as 
UBB noise. Section III provides an analysis of the existence 
form using the expected distribution estimator. Section IV 
presents simulations of the proposed method. The paper is 
summarized in section V. 

Notation: 
N

 represents a n -dimensional vector space, 

. denotes the 2-norm of the matrix, {.}Ncol  denotes a 

column vector with one block, and {.}Ndiag  denotes a 

diagonal matrix with one block. 

II. MAIN TASKS 

In a distributed network configuration environment, the 
network topology used in this paper is a directed graph, 
which is defined in the following form. 

Assume that the node index set is denoted by 

{1,2,..., }V N= , set of node edges are denoted by 

V V    , the weighted adjacency matrix is denoted by 

[ ] N N

ijA a =  . ( , , )D V A=  denotes the weighted 

directed graph of the N -node interaction topology. For any 

,i j V  , 
ija  in A denotes the weight of an edge between 

two neighboring nodes when node i  be able to collect 

message from node j , 0ija  , if 0ija = , node i  cannot 

collect message from node j . { : ( , ) }iN j V i j =    

represents the neighbor set of node i . All elements in this set 

are called neighboring nodes of node i . 

The bounded noise is treated in this paper as a set of 
bounded ellipsoids in the model building process. 

{ : , 1}a a b Ec c = +  stands for ellipsoid, the 

center of the ellipsoid is 
Nb , 

n mE  is the lower 

triangular matrix of the ellipsoid, ( )rank E m n=  . 

Suppose E is a lower triangular matrix with all elements 
positive, and another representation of the ellipsoid can be 
obtained by cholesky decomposition as 

1{ : ( ) ( ) 1}Ta a b P a b− − −   , where 
TP EE=  . 

A. System Model 

To protect the security of state information, it needs to be 
protected by differential privacy, and due to the dependence 
of the Laplace mechanism in differential privacy on the 
introduced noise characteristics, this paper adds the privacy 
noise with Laplace distribution to the initial state. And under 
the influence of process noise and measurement noise, the 
discrete time-varying linear system model established in this 
paper is described as follows. 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 01 0

x t t

x t C F

t

t t tw x xt

 



= +


+ = + = ，
(1) 

where ( ) n xx t   denotes the state variable at t  time, 0x  

is a given initial state value, ( )C t and  ( )F t are real-valued 

matrices, ( )
n

t    repersents the internal state of the 

system after adding privacy noise, ( )
n

t   is privacy 

noise and follows the Laplace distribution 

 ( ) ( )~ , tLap bt b cq =   (2) 

where c  and q  satisfy the following conditions 

 0, (0,1)c q   (3) 

( ) nww t   is UBB process noise which is within a certain 

range 

 ( ) ( ) ( ) -1: ( )  { }1T

tW w t w t R t w t   (4) 

where ( ) ( )    0TR t R t=   is a time-varying  matrix. 

B. Output  Measurement  Models 

At time t , build a measurement model for sensor i. 

 ( ) ( ) ( ) ( ) ( ) i i i iy H t x t D t tt v= +  (5) 
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where ( )
n y

iy t   represents the output measurement by 

sensor node i  at time t , ( )iH t  and ( )iD t  are time-

varying real-valued matrices with appropriate dimensionality, 

( )
n

vi

iv t   is UBB measurement noise which is within a 

certain range 

 
1{ ( ) ( ) ( ) ( ) }: 1i T

t i i i iV v vt t tQ tv−   (6) 

where ( ) ( )    0T

i iQ t Q t=   is a time-varyingm matrix. 

Remark: If 
(1) (2)Pr[ lg( ) ] Pr[ lg( ) ]A x e A x    holds, any 

pair of neighboring initial states are denoted by ( )(2) 0ix  and 

( )(1) 0ix , and the algorithm satisfies - differential privacy 

performance, where 
ˆ( )

i
i

i i i

q

c q A


=

−
 . Note that lg(.)A  

denote running this algorithm and   represent the entire 
execution state domain of the algorithm [17] . 

C. Set-Membership Estimator 

The estimated system state at time 1t + , which obtained 

from the  estimator i  execution, is expressed as 

 ˆ ˆˆ ˆ( 1) ( ) ( ) ( ) ( )
i

i i i i ij j

j N

x t A t x t B t a y t


+ = +   (7) 

where ˆ ( )iA t  and ˆ ( )iB t  represent the estimated gain 

matrices with the appropriate dimensions and 

( ) ( ) ( ) ( )ˆ
i i i it ty tH xty = −  represents the measurement 

residual at time t . And the estimation at the initial time ,0
ˆ

ix  

is confined to an ellipsoid 

 
1

0 0 0 ,0 ,0 0 ,0
ˆ ˆ{ : ( ) ( ) }i T

i i i iX x x x U x x −− −   (8) 

where ,0 ,0 0T

i iU U=   is a known real-valued matrix,  

0i   represents a scaling parameter about the ellipsoid. 

Typically, when performing distributed estimation on a 
WSN, each sensor needs to be estimated point by point. 
Since it is a vector with no fixed boundaries, there is no 
guarantee that all estimates are within the same confidence 
interval [18]. However, in practical application, there is a 
need to estimate the target with 100 per cent confidence, to 
establish a confidence interval that contains all the true states 
of the target. Therefore, it is necessary to apply set-
membership estimation. 

When systems (1) and (5) are subjected to UBB process 

noise ( )w t , measurement noise ( )v t and privacy noise 

( )t , the state ( 1)x t +  can still lie within the estimation 

interval of the sensor and therefore a set of estimates 
containing the true state can be obtained 

1

1 { ( 1) : ( 1) ( 1) ( 1) }i T

t i i i iX x t e t U t e t −

+ + + + +  (9) 

where ˆe ( 1) ( 1) ( 1)i it x t x t+ = + − + , ( 1)ie t +  represents 

the estimation error, ( 1) ( 1) 0T

i iU t U t+ = +   is a time-

varying matrix. 
Based on the above conditions, for the problem of set-

membership estimation, the problem now needs to be solved 

as follows: for prescribed scalars 0i  , and ( )
n

t   , 

( ) nww t   and ( )
n

vi

iv t  , i v , one-step predicted 

state of the system ( 1)x t +  can be guaranteed to remain 

within the ellipsoid 
1

i

tX +
 of the estimated state when time-

varying real-valued matrices U ( 1) 0i t +  , ˆ ( )iA t and 

ˆ ( )iB t exist. 

III. ANALYSIS OF EXPECTED DISTRIBUTION ESTIMATORS 

This section provides a unified description of the N  

subsystems in the distributed system, and to facilitate the 
analysis of this model, the main parameters are described as 
following. 

 ( ) ( )  ( ) ( ) ,N i Nt t t te col e x col x= =  

 ( ) ( )  }ˆ , (ˆ ) { ( )N i Ntx col x t col tt  = =  

 
2( ) { ( )}, ( ) 2 ( )NM t diag M t M t b t= =  

 ( ) ( )  ( ) ( ) ,N N i tw cot t tl w v col v= =  

 

1

2{ },N i N icol diag   
 

= =  
 

 

 ( ) { ( )}, ( ) { ( )}N i N iU t diag U t L t diag L t= =  

 ( ) { ( )}, ( ) { ( )}N N iR t diag R t Q t diag Q t= =  

 ( ) { ( )}, ( ) { ( )}N NC t diag C t F t diag F t= =  

 ( ) { ( )}, ( ) { ( )}N i N iH t diag H t D t diag D t= =  

 ˆ ˆ ˆ ˆ( ) { ( )}, ( ) { ( )}N i N iA t diag A t B t diag B t= =  

Next, Theorem 1 analyses the existence of forms for 
estimators with the expected distribution. 

Theorem 1: For a prescribed scalar 0i  , ( )
n

t   , 

( ) nww t   and ( )
n

vi

iv t  , i v , if exists a sequence 

of real-valued matrices U ( 1) 0i t +  , ˆ ( )iA t , ˆ ( )iB t  and a 

sequence of scalars ( ) 0m t  , 1,2,3,4m =  so that 

 
( 1) ( )

0,
* ( )

U t t
t N

t

 − + 
   

 
 (10) 
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where 

ˆ ˆˆ( ) [( ( ) ( )) ( ), ( ( ) ( ) ( )) ( ),t C t A t x t C t B t AH t L t = − −

 ˆ( ), ( ), ( ) ( )]F t C t B t AD t−  

and 
, 5 5( ) [ ( )]p qt t  =   is a matrix (since ( )t  is a 1 5  

matrix, it follows that the matrix is a 5 5  matrix) and the 

non-zero terms in the matrix are represented as folloing: 

 

1,1 1 3 4

1

2,2 4

1

3,3 1

1

4,4 2

1

5,5 3

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N

i

i

t t N t N t N

t t I

t t R t

t t M t

t t Q t


=

−

−

−

 = − + + +

 = −

 = −

 =

 = −



 

Then, based on the implementation of state estimation, it 

is guaranteed that the one-step predicted state ( 1)x t +  of 

the system always lies within the state estimation 

ellipsoid
1

i

tX +
. 

Proof: For this proof the method of mathematical 

induction is used. First, 
1

,0 ,0 ,0

T

i i i ie U e −   is obtained from(8). 

At time t , assuming ( ) i

tx t X , which 

satisfies
1( ) ( ) ( )T

i i i ie t U t e t −  . Then, just prove that 

1( +1) ( +1) ( +1)T

i i i ie t U t e t −   holds. 

Redefine the ellipsoid satisfied by the estimation error at 

moment t  as
1ˆ ˆ( ( ) ( )) ( )( ( ) ( ))T

i i i ix t x t U t x t x t −− −  . 

The Schur complement is then used to 

redefine
1 ( ) ( ) ( )T

i i i ie t e t U t −  . ( )iU t is decomposed by a 

cholesky factorization, such that ( ) ( ) ( )T

i i iU t L t L t= , 

where ( )iL k  is a lower triangular matrix with elements 

greater than zero. That is, the above equation can be 

rewritten as
1 ( ) ( ) ( ) ( )T T

i i i i ie t e t L t L t −  . 

Let define
1/2 1 ˆ( )( ( ) ( ))i i i iL t x t x t  − −= − , then 

1 1ˆ ˆ( ( ) ( )) ( )( ( ) ( )) 1T

i i i i i ix t x t U t x t x t   − −= − −  (11) 

Which satisfies 1i  . 

From the above equation, it follows that 

 
1/2 ˆ( ) ( ) ( )i i i ix t L t x t = +  (12) 

From(1), (7) and (12), the estimation error ( +1)ie t is 

regained,  i.e. 

ˆ ˆ( +1) ( )( ( ) ( )) ( ) ( ) ( ( ) ( )i i ie t C t x t t F t w t A t x t= + + −

 ˆ ( ( ))
i

i ij j

j N

B t a y t


+ ）  

 
1/2ˆ ˆ( ( ) ( )) ( ) ( ) ( )i i i i iC t A t x t C t L t = − +  

 ( ) ( ) ( ) ( )F t w t C t t+ +  

 
1/2ˆ ( ) ( ) ( )

i

i ij j j j j

j N

B t a H t L t 


−   

 ˆ ( ) ( ( ) ( ))
i

i ij j j

j N

B t a D t v t


−   (13) 

Let ( ) [1, , ( ), ( ), ( )]Tt w t t v t  = , then (13) can be 

rewritten as: ( +1) ( ) ( )e t t t=  , where 

ˆ ˆˆ( ) [( ( ) ( )) ( ), ( ( ) ( ) ( )) ( ),t C t A t x t C t B t AH t L t = − −

 ˆ( ), ( ), ( ) ( )]F t C t B t AD t− , 

so the one-step prediction state error 
1( +1) ( +1) ( +1)T

i i i ie t U t e t −   be able to redifined as 

 
1( )( ( ) ( 1) ( ) ) ( ) 0T Tt t U t t t − +  +   (14) 

where 

1

{ ,0,0,0,0}
N

i

i

diag 
=

 = − . 

From (2), (4), (6) and 1i  , we have 

1( ) ( ) ( ) 0T t t t   , 
2( ) ( ) ( ) 0T t t t   , 

3( ) ( ) ( ) 0T t t t    and 
4( ) ( ) ( ) 0T t t t   . Note 

that 
1

1( ) { ,0, ( ),0,0}t diag N R t− = − , 

1

2 ( ) {0,0,0, ( ),0}t diag M t− = , 

1

3( ) { ,0,0,0, ( )}t diag N Q t− = − , 

4 ( ) { , ,0,0,0}t diag N I = − . 

By the S-procedure, there exists a scalar sequences ( )m t , 

1,2,3,4m = , which is greater than zero. And then, (14) is 

able to redfined as 
1

1 1 2 2( ) ( 1) ( ) ( ) ( ) ( ) ( )T t U t t t t t t− +  ++  +   

 3 3 4 4( ) ( ) ( ) ( ) 0t t t t+  +    (15) 

According to the Schur complement,  (10) can be obtained 
from  (15). To the end the proof is complete. 

IV. SIMULATION 

The ship transportation process is in a vast space, the 
speed is affected by the external environment, for instance 
currents and winds that can generate a certain amount of 
noise, and the ship's resistance is also changed accordingly. 
In order to avoid that the initial speed and resistance are not 
leaked during the ship sailing, the initial transmitted state 
needs to be protected, and the differential privacy method is 
introduced. 

Differential privacy mainly protects the real state from 
leaking through random noise. When the system state 
information is stolen, the stealer will get the system state 
after adding the privacy noise and cannot infer the real state 
of the system without the privacy noise, so the real state can 
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be protected. The sensor needs to perceive the speed and 
resistance information, so it is arranged as a wireless sensor 
network. In order to verify the effectiveness of the method, 
this section constructs the system model of ship 
transportation. 

1 1 1

2 2 2

( 1) 0.9746 0.0013 ( )+ ( )

0.045 0.7528( 1) ( ) ( )

x t x t t

x t x t t





   + − 
=    

−+ +    

 

Where 
1( )x t represents the speed of the ship and 

2 ( )x t  

represents the resistance to the ship while underway. In 
practical applications life, process noise is mainly derived 
from the effects of unpredictable environmental changes, 

while privacy noise ( )t  is mainly Laplace-distributed noise 

added to protect the safety of the initial state. The time-
varying parameter matrix in the model is 

 
0.9746 0.0013

( )
0.045 0.7528 0.2*sin( )

C t
t

− 
=  

− + 
 

 
0.2+0.2*sin( )

( )
0.2

i
F t

 
=  
 

 

To make the estimator more reliable and accurate, the 
system deploys a network of five sensors, each of which can 
only transmit local measurements and estimates to its 
neighboring sensors, with the topology shown in Figure 1. 
The adjacency matrix of this network consists of two 
elements, 0 and 1, i.e. 1 represents the sensor can transmit 
data to the sensor, conversely, the value is 0. The transmitted 
measurements in this model are influenced by the 

measurement noise ( )iv t , where the time-varying parameter 

matrix is  ( ) 0 1+0.1*( 1) 0.1*sin( )iH t i i= + − and  

( ) 1/ ( 1)iD t i= + . 

Set the ship's initial operating speed be 1.6m/s and the 
initial drag be 3.6kgf. For the five estimators the initial 

estimates at time 0 are set to  0

1̂ 1.7 3.7x = , 

 0

2
ˆ 1.5 3.8x = ,  0

3
ˆ 1.8 3.5x = ,  0

4
ˆ 1.3 3.4x = , 

 0

5
ˆ 1.4 3.9x = . Set 0 2{40 40}U diag= , 1i = , 

( ) 0.3R t = , ( ) 0.1iQ t = , ( ) 1b t = . 

 

 
 

Fig. 1. Sensor relationship diagram 
 

Fig. 2. Actual and estimated values of the system state, 
and state estimation intervals 

 

In Figure 2, 
1( )x t and

2 ( )x t  represent the first and 

second parameters in the state vector. 
1(t)ix and 

2 (t)ix  

represent the first and second parameters of the estimated 

values of the estimator i . 
1(t)iux  and 

2 ( )iux t  represent the 

state estimates obtained without adding UBB noise. That is, 
the yellow solid line in Figure. 2 represents the state 
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estimation value without UBB noise, and the green solid line 
represents the state estimation value with UBB noise and 
privacy noise. From Figure 2, even when UBB noise and 
privacy noise are added, the state values of the system and 
the corresponding estimates of each estimator are within the 
estimation interval. The accurate estimated value can be 
obtained that the model can be successfully applied to the 
ship sailing system. 
 

 
 

Fig. 3. Estimation error 
The estimation errors corresponding to each estimator are 

depicted in Figure 3, and all estimation errors are before 0-
0.15. A good application can be obtained for the proposed 
model in the estimation of the state, with the estimates at 
each moment converging to the state value of the system at 
that moment. 

V. CONCLUSION 

This study addresses the security of DLTVS over WSN. 
The purpose of protecting state at the initial moment is 
achieved by incorporating privacy noise. It is then verified 
that the one-step predicted state is always ensured to be 
within the estimated ellipsoid and the differential privacy of 
the system is analyzed. Finally, it is verified using 
simulations that the designed estimator yields accurate 
estimates. The future work will be focus on the issue of the 
differential privacy for DLTVS with time delays. 
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