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Abstract—In the embedded system, the energy level of the
device can satisfy the energy consumption of the minimum task
at all times, which is a necessary condition to maintain the
sustainable operation of the energy harvesting embedded system.
Aiming at the problem that the energy-harvesting embedded
system is unable to ensure the schedulability of tasks in the system
due to energy shortage and energy waste, we propose an energy-
saving scheduling strategy based on Q-learning. On the premise
of meeting the real-time requirements of tasks, the agent can
reduce the energy consumption in the process of task execution by
reasonably arranging the task scheduling sequence, and ensuring
that the remaining energy of the system can maintain the normal
execution of the scheduling task. The experimental results show
that the q-learning algorithm saves 61.8% and 55.32% of the
average energy compared with the as late as possible (ALAP)
and as soon as possible (ASAP) algorithms, respectively, and the
time of system energy is maintained within a reasonable range
is on average 21.01% more stable than that of the ASAP.

Keywords- reinforcement learning; embedded systems;
energy harvesting

I. INTRODUCTION

With the application of embedded systems in various fields,
the operating environment of the system has gradually become
complicated [1], such as remote uninhabited areas or harsh
ecological locations, posing its energy utilization requirements
increasingly stringent [2]. Traditional embedded devices are
mainly powered by batteries with limited available energy.
Batteries run out of power and face the need to replace
batteries, which is impractical in those areas where the deploy-
ment environment is harsh, so energy harvesting technology
is introduced into embedded systems, which uses energy
harvested from the environment to continuously supply power
[3]. However, although energy harvesting technology provides
a new energy supply solution for embedded systems, it also
brings new challenges.

Due to the instability and dynamic variability of energy har-
vesting [4], the remaining energy of the equipment is unable to
guarantee the schedulability of tasks at all times. In this work,
we take solar energy into account for follow-up research. As
shown in Fig. 1, it shows the energy fluctuation of the energy
harvesting embedded system. When the energy harvesting rate
is larger, the harvested energy exceeds the energy demand of
the computing unit, the excess energy is stored in the storage
unit, however, when the stored energy reaches the upper limit
of the storage capacity Emax, the harvested excess energy
will cause energy waste. On the contrary, when the energy
harvesting rate is slower, the available energy is less than the

energy demand of the computing unit, and the task of the
computing unit will be interrupted due to energy shotrage.
The traditional scheduling algorithm of the energy harvesting
embedded system proposed many energy-saving methods to
solve the energy shortage problem, and stabilized the energy
supply of equipment through energy saving technology but
failed to provide a good solution to the energy waste problem.

Fig. 1. Profile of energy required and energy available from external sources.
The unsustainable operation can be caused by the imbalance of available and
required power, in which case additional energy needs to be extracted from
the battery.

ALAP and ASAP are the classic scheduling strategies in
scheduling algorithms, but both of them have shortcomings.
The ALAP scheduling algorithm aims to focus on the available
energy for scheduling in the system and delay the execution of
the task as much as possible [5], so it is unable to guarantee
that the task will be completed before the deadline, resulting
in scheduling failure. The ASAP scheduling algorithm aims to
ensure the execution of tasks in time [6]. Once the energy in
the system can meet the needs of the task, the scheduling task
will be executed, but it is unable to guarantee that the system
has the minimum energy to maintain sustainable operation
after the execution of the task, resulting in insufficient system
energy.

The scheduling algorithm needs to ensure the real-time
performance of tasks and sufficient available energy to avoid
task interruption. The reinforcement learning algorithm has a
significant effect on solving the problem of balance between
the two [7]. Therefore, we propose a reinforcement learning
task scheduling algorithm, which reduces the energy waste in
the scheduling process and balances the energy and the real-
time requirements of the task. The actions that can satisfy
the requirements will receive a reward from the enviroment,
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and the actions that cause insufficient energy or the real-time
performance is unsatisfied are given punishment measures, and
the optimal action execution sequence is found by continu-
ously interacting with the environment. The main contributions
of this work are as follows:

1) We designed an energy-saving scheduling method based
on Q-learning to overcome the problem of insufficient
energy in the energy harvesting embedded system.

2) Our proposed method reduces the wasted energy on
average by 55.32% and 61.8% owing to limited stor-
age capacity when compared to the ASAP and ALAP
algorithms.

3) Our proposed method takes an average of 21.01% more
time than the ASAP method to keep the energy state
stable.

This paper is split into well-regulated systematic sections
as follow: Section II provides a brief literature overview
on EHES and RL. Our experimental model is presented in
section III. Then, in section IV of the article, we introduce the
related information of RL and apply Q-learning to our model.
Section V discusses the system’s simulation results as well as
a comparison to other classic algorithms. Finally, Section VI
describes the conclusion of the paper.

II. RELATED WORK

Many scheduling algorithms focus on energy saving in en-
ergy harvesting embedded systems. Moser et al. [8] proposed
an algorithm called the Lazy Scheduling Algorithm (LSA),
which was based on the hypothesis that energy consumption
correlated with worst-case response time, but this assumption
later proved to be infeasible [9]. Abdeddaim et al. proposed
classical ALAP and ASAP scheduling algorithms, in which
the goal of the ALAP algorithm is to harvest as much energy
as possible to delay the execution of tasks, and compress
slack time [10] as much as possible so that the system can
supplement battery energy to the maximum extent. ASAP
algorithm judges the current energy level before each time unit
task execution. If the current energy level can support the task
execution for one time unit, the task will be executed at this
time unit, otherwise, the system will suspend for one time unit
to replenish energy, and then repeat the previous judgment.
However, the application of these two algorithms may cause
unnecessary waste of resources in some scenarios. Later, a
clairvoyant algorithm called EDeg has been proposed in [11],
[12], which relied on a generalizable meta policy, as long
as the system can perform without energy failure, however,
as soon as future energy failure is detected, the system is
suspended as long as timing constraints are met or until the
energy storage units is full.

In recent years reinforcement learning(RL) methods have
been used to solve the problem of energy depletion in em-
bedded devices. In RL, agents make intelligent decisions
through interactive learning with the environment and con-
stantly learn from the rewards they receive [13]. Islam et al.
[14] proposed a new Q-learning-based approach that combined
multiple Dynamic Vlotage and Frequency Scaling (DVFS)

technologies and explored which DVFS technology is most
suitable for different situations. In [15], a q-learning-based
energy saving scheduling method for periodic tasks in real-
time systems is proposed, which is combined with the energy
saving technology DVFS to realize energy saving research.
In addition, Ding et al. [16] proposed a two-stage q-learning
adaptive scheduling algorithm to solve the problem of task
allocation and energy consumption in task scheduling. On
this basis, we consider applying q-learning method to energy
acquisition embedded system to achieve the balance between
energy consumption and task scheduling.

III. SYSTEM MODEL

In this section, we introduced the energy harvesting embe-
ded system(EHES) model with solar energy as an example.
EHES is composed of an energy management unit and task
execution unit, we investigate the energy management model
and tasks model in this work, as shown in Fig. 2.

executioning

Fig. 2. An Energy-Harvesting Embedded System Architecture.

A. Energy management unit

The energy management unit is mainly composed of an
energy harvesting unit and an energy storage unit.

a) Energy harvesting unit: In this paper, we consider
the solar panel as the stored unit of renewable energy. The
harvested energy with a large fluctuation charging rate Pr(t)
from the surrounding environment is uncontrollable and then
converted into electrical power. The process of energy pro-
duction is a time integral function. For the convenience of
calculation, we assume that the charging rate is assumed a
constant, based on this, the energy production during any time
interval [t1, t2] is denoted as Er(t1, t2) the following is shown
in equation (1).

Er(t1, t2) =

∫ t2

t1

Pr(t)dt (1)

Where the Pr(t) is a constant function, so it can be represented
as the following formula (2).

Pr(t) = Pr (2)

Therefore, in the following the energy harvest during the
time interval [t1, t2] is given by equation (3).

Er(t1, t2) = Pr × (t2 − t1) (3)

504



b) Energy storage unit: There are various energy storage
devices are available in EHES, in this work, we use a battery
as an energy storage device. Without loss of generality, we
suppose there is no loss during energy storage. The energy
storage of the battery has two extreme values, i.e. Emax

and Emin, where Emax is the maximum capacity that the
battery can store, and Emin is the minimum capacity that the
battery can store, we assume that initial energy Emin = 0, the
energy stored at time t is Es(t), and the energy stored during
the time [t1, t2] is denoted as Es(t1, t2). When Es(t1, t2) is
positive, it means energy consumption is less than energy
storage, however, when Es(t1, t2) is negative, it means energy
consumption is more than energy storage. In the process of
converting solar energy into electrical energy and storing it in
the energy storage unit, a certain amount of energy conversion
loss will occur, in this paper, we assume that the energy storage
is lossless.

B. Tasks model

We suppose the task set consists of a series of independent
and periodic real-time tasks {τ1, τ2, . . . , τn}, and task consists
of many real-time sub-jobs, the different task has different real-
time jobs, each task has a 4-tuple (Ci, Di, Ei, Ti), in which
Ci is the worst-case execution time, Di is a relative deadline
of task (Di ≤ Ti), Ei the worst-case energy consumption, and
Ti is the period of task. In this work, we randomly generated a
large number of periodic task sets and use YARTISS [17], [18]
as the simulation tool, which utilizes an adapted version of the
UUniFast-Discard algorithm [19] coupled with a limitation of
the hyperperiod technique to generate task sets.

IV. RL PROBLEM FORMULATION FOR EHES

Reinforcement algorithm methods are essential to solve the
optimal control problem and environment interaction. The goal
is to maximize the reward of the agent through a series of
responses to the dynamic environment. Q-learning can be ap-
plied to the scheduling tasks with time and energy constraints
problem because it can effectively capture the dynamic of
the task scheduling and environmental conditions efficiently,
and it is the most popular value-based reinforcement learning
algorithm, in which the agent builds its Q-table to estimate the
discounted future reward and takes the action with the largest
Q value at each step. After the agent takes an action to act on
the environment, the environment state changes, and a reward
is given. The environment state moves to the next new state
until the policy converges. Fig. 3. shows an overview of task
scheduling using Q-learning. The agent selects the action that
needs to be performed, then the environment feeds back the
effect of the current action, and the agent gets the reward while
reaching the new state.

The general goal of the agent is to maximize its total reward
by learning which action is optimal for a particular state, the
state value function is used to represent the agent’s reward
expectation at state s. When the agent explores the optimal
execution sequence, the reward will converge to a steady state.
Therefore, the concept of discount factor γ is introduced, and

Fig. 3. RL Communication Process for EHES.

γ value is between 0 and 1. When it approaching 1 means that
the expected reward in the future is valued, otherwise, which
means that the expected reward in the present is valued. The
derivation process of the state value function of the agent is
as follows:

Qπ(s, a) = r0 + γQ1

= r0 + γ(r1 + γQ2)

= r0 + γr1 + γ2(r2 + γQ3)

= ...

= r0 + γ(r1 + γr2 + γ2r3 + ...)

= r0 + γmaxaQπ(s′, a)

(4)

The Q value of the state-action pair is updated by the following
formula (5).

Qt+1 (st, at) = Qt (st, at)

+ α ·
(
Rt+1 + γ · max

(∀a∈A)
[Qt (st+1, at)]−Qt (st, at)

)
(5)

A. Agent
The agent is a selector of the actions that a task can perform.

The agent selects tasks according to the strategy at each unit
of time. In the Q-learning algorithm, the agent follows the ε-
greedy strategy as the action selection strategy, which means
the agent selects the action with the highest Q value with
epsilon probability, otherwise, it will randomly select another
action with the probability of 1 - ε, continuously interacting
with the environment until the Q-table reaches converge state.

B. Environment
Tasks need to satisfy several conditions during execution,

which are deployed in the environment. The following situa-
tions may occur during task execution.

• During the execution of a task, energy will be consumed.
Therefore, it is necessary to consider that the remaining
energy of the battery is less than the energy consumed by
the task. If the agent finds that the current energy in the
battery is insufficient to support the execution of the next
task, the system will automatically enter the hibernation
state, that is, no task will be executed to replenish energy.

• Through iterative training, the agent can train the task
execution sequence to ensure that the task is completed
within the deadline Ci + t < Di.
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C. State

The least common multiple of the period of each task is
defined as a hyperperiod [20], and the hyperperiod is divided
into multiple time units of 1 second. In this hyperperiod, each
task executes a time unit, and then if the system has enough
energy, the agent decides the task to be executed in the next
time unit according to the policy, otherwise the system is
in sleep state, so we summarize what may happen in the
task execution as the state space including the task missed
deadline, the system energy is insufficient, the system executes
the task, the system is idle state, the remaining time in the
super cycle cannot meet the task execution time, and the task
is not completed within the hypercycle.

D. Action

In this paper, we define a task as an action space. When
the system energy is insufficient, it cannot continue to execute
the task. In order to keep the available energy in the system,
we also define an additional action, that is, the system is in a
sleep state and does not execute the task.

E. Reward function

In a time unit, if the deadline is missed after the task
is executed, it will get a negative reward of -50, otherwise
it will get a positive reward of 0.1, after a round is over,
tasks that meet the real-time and energy requirements will
be Get a reward with a value of 100. We define that if the
remaining energy of the system is between 20% and 80% of
the maximum energy, the system has a longer life [21], so
for tasks that satisfy this condition, the reward obtained is as
shown in the formula (6) .

n∑
t=0

|Ecurr − Emax × 50%|
Emax

+ Eave (6)

Where t denotes time unit t, Ecurr denotes the current energy
of system at a certain moment, Emax denotes the max energy
that battery can store, Eave denotes the average energy, it can
be expressed by equation (7), which means the average that
total Ecurr of at n time points.

n∑
t=0

Ecurr

n
(7)

F. Q-learning algorithm

Algorithm 1 introduces the application of Q-learning in
EHES in detail. The agent receives the initial system state
and action index after initializing various parameters (lines
1-4). The algorithm starts the episode and chooses an action
following the ε-greedy policy (lines 6-10). The environment
will feedback the next system state according to the selection
of actions (line 12). If the scheduling is successful, the timeline
will be added with one (line 11). After that, we calculate the
reward value according to the current action, current state, and
next state (line 13), and then update the Q table (lines 14-16).
We gradually improved our policy training strategy to shorten
the convergence time.

Algorithm 1 Q-learning Algorithm for EHES
1: Initialize Qtable as an empty table
2: Initialize action a, statue Scurr, Snext, and timeline = 0
3: Initialize RL hyperparameters
4: Scurr ← Environment
5: while timeline < hyper − period do
6: if uniform(0,1) ≤ ϵ then
7: a = maxQ(Scurr, a

′)
8: else
9: a = take a random action

10: end if
11: The environment returns the result. If not done, the

timeline+ 1.
12: Snext ← Environment
13: r = reward(a, Scurr, Snext)
14: qpredit = Qtable[Scurr, a]
15: qtarget = r + γmax(Qtable[Snext,∀a])
16: Qtable[Scurr, a]+ = α(qtarget − qpredit)
17: Scurr ← Snext

18: end while

TABLE 1

Q-Learning Hyper-parameters Used for Simulations.

Hyper-Parameter Value

Learning rate 0.01
Epsilon(ε) 0.9

Episode 10000
Reward-decay (γ) 0.99

V. EXPERIMENT RESULTS

In this section, we compare the algorithm combined with
the Q-learning model with the traditional energy harvesting
scheduling algorithms, ALAP and ASAP. In order to evaluate
the performance of the introducing Q-learning EHES. We
developed a simulated environment using python, and we
conducted experiments based on the OpenAI gym library.

We adopt the same task set and experiment conditions to
ensure that the experiment is fair. We randomly generated
3 task sets, of which there are 4, 5, and 6 independent
tasks respectively. We hope that the algorithm, in combination
with Q-learning, can assure its operation while maintaining
a high battery energy level, assuring the battery’s lifespan
and therefore extending the life of the EHES. We set various
Q-Learning hyper-parameters in the experiment, which are
detailed in the Table 1.

We use the YARTISS tool to generate three task sets, the
proposed scheduling algorithm with Q-learning was compared
with the ALAP algorithm and ASAP algorithm. We compared
the remaining energy of the system at the current moment in
the task scheduling, the wasted energy and the time the system
was in the extended life state, and verified the effectiveness
of the algorithm. In Figure 4, we show the average reward
convergence while running a simulation and the experimental
results are shown in the Figure 5.
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Fig. 4. Average Reward Simulation Results for Three Task Sets.
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(c) Task Set with Task Number 6

Fig. 5. Changes in Energy Over Time for Three Task Sets under Three
Different Policies.

We observe that ALAP’s energy state satisfies its character-
istics, and then delay task release as much as possible while
ensuring that EHES energy is sufficient and the system’s long-
term operation is as stable as possible. The ALAP scheduling
algorithm guarantees a large energy level in a hyper-period,
as shown in the Table 2, the average energy in the task set
with four tasks is 143.32, while the average energy in the
task set with six tasks is 182.20. It’s worth noting that the
ALAP scheduling algorithm fails to schedule in the task set
of 5 tasks, which is linked to ALAP weaknesses. Because the
ALAP is overly concerned with energy, all tasks are postponed
until the execution deadline, consuming a great deal of energy

TABLE 2

Average Energy Level.
Task number Policy Value

4
Q-learning 103.77

ALAP 143.32
ASAP 39.78

5
Q-learning 165.08

ALAP -
ASAP 151.74

6
Q-learning 179.66

ALAP 182.20
ASAP 179.23

and making it difficult to arrange the set of tasks that can
be scheduled. On the other hand, ASAP is the opposite. In
comparison to ALAP and Q-learning policies, ASAP has a
lower energy level in a hyper-period to ensure the priority of
task calculation. The average energy level in the tasks set with
4, 5, and 6 is 39.78, 151.74, and 179.23, respectively. Our goal

TABLE 3

In a Hyper-period, The Proportion of The Energy Level of The Three Task
Sets in The Range of 20%-80% under Three Different Policies.

Task number Policy Percentage

4
Q-learning 85.12%

ALAP 58.68%
ASAP 43.80%

5
Q-learning 29.91%

ALAP -
ASAP 23.94%

6
Q-learning 20.64%

ALAP 11.88%
ASAP 4.88%

in implementing Q-learning is to take into account as many
energy and time attributes as feasible in order to ensure that
EHES can run for an extended period of time. During the
execution of the task, we must ensure that the energy storage
unit’s energy is sufficient and at a high level, but that the
energy is not exhausted and the EHES stops running. As a
result, we established a 20% - 80% energy range to attain
this purpose. We believe that in the 20% - 80% energy range,
the task can meet the system’s minimum execution energy
consumption and will not waste the harvested energy due to
excessive attention to energy.

In the test of three sets of task sets, Q-learning has the
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largest proportion in the range of 20% to 80% when compared
to ALAP and ASAP, as shown in Table 3. We observe that
this value appears to be influenced by the change of task
attributes and energy harvesting power in the task set. While
the results of ALAP, ASAP, and Q-learning may be similar in
some extreme instances, Q-learning outperforms ALAP and
ASAP in terms of time and energy coordination. In addition,
as shown in Table 3, Q-learning has a relatively high energy
level, indicating that Q-learning can keep the system energy
steady and healthy while allowing EHES to operate for a long
time.
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(b) Task Set with Task Number 5
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(c) Task Set with Task Number 6

Fig. 6. Change of Wasted Energy of Three Task Sets with Time under Three
Different Policies.

TABLE 4

Wasted Energy Value.
Task number Policy Value

4
Q-learning 7

ALAP 124
ASAP 20

5
Q-learning 1445

ALAP 110
ASAP 2931

6
Q-learning 4026

ALAP 5689
ASAP 8094

The comparison of ALAP, ASAP, and Q-learning algorithms
for battery energy waste is presented in Figure 6. In task sets of
4, 5, and 6, we can see that the Q-learning scheduling method
wastes the least amount of energy when compared to ALAP
and ASAP algorithms. In the hyper period with a task set of

four, the Q-learning algorithm saves 94.35% more energy than
the ALAP algorithm and 65% more energy than the ASAP
strategy, as demonstrated in Table 4. In the hyper-period with
the task set of 5, its waste energy is 50.70% less than the
ASAP algorithm. In the hyper-period with the task set of 6
(Figure 6(c)), its waste energy is 29.23% less than the ALAP
algorithm and 50.26% less than the ASAP algorithm. We can
see that the wasted energy algorithm of the ASAP method
is almost identical to the Q-learning algorithm in Figure 6(a).
This is because the characterizer of the ASAP algorithm keeps
the battery energy at a lower level at the start of the scheduling.
However, if the battery can store enough energy, the amount
of energy wasted over time may grow. The amount of energy
wasted by ALAP is constant in Figure 6(b). The system stops
functioning because the ALAP algorithm fails to schedule at
roughly 150 time units.

VI. CONCLUSION

In this study, an energy harvesting task scheduling strategy
based on the Q learning was proposed, which aims to satisfy
the characteristic of real-time and energy requirements in the
process of task scheduling, reduce energy waste during energy
harvesting, maintain the system energy level in the state that
can maintain the normal operation of task scheduling. More-
over, compared with the typical energy harvesting scheduling
algorithms, the proposed Q-learning scheduling algorithm can
utilize the harvested energy more effectively, to achieve the
purpose of prolonging the operation life of the system. In the
future, we will improve its scalability and focus on applying
it to scheduling strategies of other renewable energy.
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