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Abstract—With the improvement in computing power pro-
vided by modern multi-core architectures, software developers
tend to integrate hybrid key systems into a single multi-core
hardware platform to reduce costs. When integrating hybrid
critical systems into a multi-core platform, critical tasks should
not be affected by non critical tasks, so isolating shared resources
between different critical levels is a major challenge.

As virtualization technology can provide complete isolation
of hardware shared resources, in this paper, a mechanism that
prevents the DRAM bank interference from non real-time cell
and hypervisor to real-time cell on multi-core platforms via bank
partitioning to enhance real-time for the Jailhouse hypervisor is
proposed. Based on that mechanism, the memory access of non
real-time cell and Jailhouse hypervisor will not cause DRAM
bank interference to all real-time tasks which run in the real-
time cell and are limited to accessing the physical pages belonging
to the DRAM bank assigned to the real-time cell. A series of
experiments are performed on the Raspberry Pi 4 show that
RJMM is effective in improving the real-time and isolation
performance composed of the native Jailhouse.

Keywords—bank partitioning, Jailhouse, real-time, isolation,
partitioning hypervisor

I. INTRODUCTION

With the increase of computational power and performance
which are offered by modern multicore architectures, there
is a trend that mixed-criticality systems, such as autonomous
vehicles systems in which the real-time and non real-time tasks
with different safety and timing requirements are integrated
and scheduled, tend to be consolidated into a single multicore
hardware platform by software developers to reduce the costs
and improve the maintainability of software.

Although the demand for such consolidating is ever-
growing, it causes a new problem stemming from the inter-
ference generated by the contention of shared resources. The
DRAM is one sort of shared resources on modern hardware
multicore platforms, and the DRAM memory sharing between
all cores in system may cause memory contention and inter-
ference problems, leading to the performance degradation of
real-time tasks due to the delays introduced by the memory
contention.

In order to integrate a mixed-criticality system in which
critical tasks should not be affected by the non-critical ones
on a multicore platform with shared memory, the isolation for
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those shared resources among different criticality tasks is a
significant challenge.

The virtualization technology applied in various fields is
often regarded as a promising solution for such consolidation.
Since the virtualization technology can provide the isolation of
shared resources, with the help of it, it becomes possible to in-
tegrate tasks with different critical levels on the same physical
platform. However, while some hypervisors, such as KVM and
Xen, have been initially designed not to consider the isolation
of shared sources which can cause contention and interference
problems. Fortunately, there are some lightweight partitioning
hypervisors oriented to real-time and safety-criticality domain,
such as ACRN [1], Bao [2], Jailhouse [3] and XtratuM [4],
which take into account the need of isolation.

Especially, A number of related studies [4][5][6] use the
memory bank partitioning to reduce memory interference for
improving performance in virtualization. Based on the MPKI
and RBH of the VM, DCRM [5] partitions all VMs into
three types and adopt different strategies for different types
of VMs. VMMP [4] dynamically maps hypervisor, VMs and
applications onto different memory banks on KVM hypervisor
to improve performance in cloud computing, but it needs
a lot of banks, which may be satisfied in cloud computing
platforms, however the demand for so many banks on resource
limited ones can not be met. What’s more, when the number
of memory banks is not enough, each two applications of one
VM will share the same bank group.

To solve the above described issues, in this paper, we
propose RIMM, a mechanism that prevents the DRAM bank
interference from non real-time cell and hypervisor to real-
time cell on multi-core platforms via bank partitioning, to
enhance real-time for the Jailhouse hypervisor. When creating
a cell, RIMM maps the cell into specified banks according
to whether or not it is a real-time cell. To prevents the bank
interference from hypervisor to real-time cell, RIMM maps
the memory allocated by Jailhouse hypervisor into specified
banks different from that of real-time cell. Therefore, the
accesses to memory by the non real-time cell and Jailhouse
hypervisor will not cause DRAM bank interference to all
real-time tasks running in the real-time cell which limited
to accessing physical pages belonging to the DRAM banks
allocated to the real-time cell.



We use the Cyclictest and Isol-Bench benchmarks to con-
duct a series of experiments on our experimental platform
to assess the real-time and isolation performance achieved
by our mechanism, compared to the native Jailhouse. The
evaluation results demonstrate that our mechanism is effective
in improving the real-time and isolation performance in virtu-
alization. The results with the Cyclictest benchmark show that
the RIMM performs good real-time capability compared with
the native Jailhouse. Especially, the average and maximum
latency of RIMM respectively went down by 73.7% and 73.5%
compared to the native Jailhouse. In the Isol-Bench benchmark
experiment, RIMM increases the running speed of Isol-Bench
by an average of 1.5% compared with the native Jailhouse.

The main contributions of this paper are summarized as
follows:

1. We propose a new mechanism which prevents the
DRAM bank interference from non real-time cell and
hypervisor to real-time cell on multi-core platforms via
bank partitioning to enhance real-time for the Jailhouse
hypervisor

2. We implement our mechanism in Jailhouse 0.12 for
evaluation.

3. We perform a series of experiments to assess the
real-time and isolation performance achieved by our
mechanism compared to the native Jailhouse on our
experimental platform.

The rest of this paper is organized as follows. Section II
provides related works. The design and implementation of our
mechanism are provided in Section III. Section IV describes
the evaluation results including the experimental setup. Finally,
we conclude in Section V.

II. RELATED WORK

In this section, we review some of the recent related works
about lightweight partitioning hypervisors and DRAM bank
partitioning for hypervisor.

A. Lightweight Partitioning Hypervisor

There are some lightweight partitioning hypervisors thar are
oriented to real-time and safety-criticality domains, such as
ACRN [1], Bao [2], Jailhouse [3] and XtratuM [4]. ACRN is a
lightweight hypervisor developed by Intel on x86 architecture
for the Internet of things, which meets low-latency access
requirements and relies on Linux to boot the system. XtratuM
is designed to satisfy the highly critical requirements in the
aerospace, which follows the ARINC 653 standard, such as
considering temporal and spatial isolation, low overhead, effi-
cient inter-partition communication and so on. The resources
allocated to each partition are configured by a configuration
file. Bao is a lightweight static partitioning hypervisor, which
is implemented on ARM and RISC-V platforms and does not
rely on Linux. It provides a transparent and secure partitioning
layer for critical situations. Jailhouse performances the low
overhead and low latency. Like ACRN, Jailhouse also relies
on the Linux boot system. Some projects are relying on the
spatial isolation capability of Jailhouse to isolate real-time and

non real-time systems, such as piCASSO, Hercules, RETINA
and SELENE project [7][8][9][10].

B. Bank Partitioning in Virtualization

Several related studies [4][5][6] use the memory bank
partitioning to reduce memory interference for improving
performance in virtualization. VMMP [4] implemented in
KVM hypervisor maps hypervisor, VMs and applications into
different memory banks, the strategy used by VMMP is that
(1) when the number of banks is enough, the KVM hypervisor
and each application of one VM are allocated 16 banks
respectively and the remaining banks are allocated to all VMs,
(2) when it is not enough, the KVM hypervisor and all VMs
are allocated 16 banks respectively and each two applications
of one VMs will share a bank group. Based on the MPKI and
RBH of the VM, DCRM [5] divides all VMs into three types
and allocates memory banks according to the VM type. The
bank allocation strategy of DCRM is that 16 unique memory
banks are allocated for memory-bound VMs with high row
buffer locality, the memory-bound VMs with low row buffer
locality are allocated one of 16 bank groups and CPU-bound
VMs can use all memory banks.

III. DESIGN AND IMPLEMENTATION

RIMM is a mechanism that prevents the DRAM bank
interference from non real-time cell and hypervisor to real-
time cell on multi-core platforms via bank partitioning, to
enhance real-time for the Jailhouse hypervisor. In this section,
we present the design and implementation of RIMM.

The design of RIMM includes two key techniques: (1) when
creating a cell, RIMM can map the cell into specified banks
according to whether or not it is a real-time cell (see Section
3.2). (2) To prevents the bank interference from hypervisor to
real-time cell, RJMM map the memory allocated by Jailhouse
hypervisor into specified banks different from those of real-
time cells (see Section 3.3).

As shown in Figure 1, when creating cells, we assign bank
group 1 to the real-time cell and bank group O to non real-
time cell and Jailhouse hypervisor. It is implemented during
cell create phase to allocate bank group 0 and bank group 1
to the real-time cell and the non real-time cell separately, and
allocating bank group 0 to Jailhouse hypervisor is achieved in
the enable stage. In this way, all non real-time tasks running
in a non real-time cell and Jailhouse hypervisor are limited
to access physical pages belonging to the DRAM banks not
allocated to real-time cell, so that the execution of real-time
tasks will not be affected by that of non real-time tasks and
hypervisor.

A. DRAM Bank Mapping

In order to allocate a page belonging to a specified DRAM
bank to a specified cell, we must first obtain the DRAM
address mapping information from physical address to DRAM
address that can determine which DRAM bank a physical page
belongs to. At present, some studies [11][12] use reverse engi-
neering to obtain DRAM address mapping information. These
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Fig. 1. Assigning the specified bank group to the specified cell and Jailhouse
Hypervisor.
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Fig. 2. The memory mapping information of our experimental platform.

reverse engineering solutions are aimed at those architectures
which do not reveal DRAM address mapping information in
their official manuals, such as Intel Architecture. In this work,
we use Raspberry Pi 4 as our experimental platform to evaluate
RIJMM and we can get the mapping information of Raspberry
Pi 4 from [13].

Figure 2 illustrates the mapping information of the DRAM
Bank of the experimental platform in this paper. It can be seen
from the figure that the four bank bits are determined by bits
11 to 14 of the physical memory address. So we can divide
all 16 banks into two groups and assign bank groups O to the
non real-time cell and Jailhouse hypervisor, bank groups 1 to
the real-time cell.

B. Allocating Bank Group to Cell

There are usually two address translation stages in virtu-
alization scenario. In the first stage, the virtual address of
VM called Guest Virtual Address (GVA) is translated to the
physical address of VM called Guest Physical Address (GPA),
at second stage, the GPA needs to be translated to Host
Physical Address (HPA) in which the data required is stored.

Jailhouse Hypervisor allocates memory for a cell depending
on the configuration in the cell configuration file in which
there are some memory regions defined by a virtual address
space and a physical address space, both of which have the
same size. At the create stage, Jailhouse creates mapping
between GPA (the address within the virtual address space of
the memory region) and HPA (the address within the physical
address space of the memory region) for cells, so that when
cells are running, the GPA of cell will be mapped to HPA by
the hardware address translation unit.

To map a cell into specified banks, RIMM modifies the
memory region in the cell configuration file to be defined

TABLE I
EXPERIMENTAL ENVIRONMENT
Parameter Configuration
Processor ARM Cortex-A72
Quad Core Processor 1.5GHz
L1 I-cache 48KB
L1 D-cache 32KB
L2 shared cache 1IMB
DRAM Memory 4GB LPDDR4 SDRAM
16 banks

by a virtual address space and the size of that. During the
cell creating phase, RIMM creates mapping between GPA (the
address within the virtual address space of the memory region)
and HPA (the address within the memory bank indicated by
the identifier of the cell) for the cell according to the modified
cell configuration file. Consequently, the image of the cell will
be loaded into the designated bank group at the following cell
load stage, and the memory allocated to the processes running
in the cell is in the bank group during runtime.

C. Allocating Bank Group to Jailhouse

Jailhouse Hypervisor maintains a memory pool called
mem_pool from which Jailhouse allocates free pages and to
which it frees pages during runtime. To prevents the bank
interference from hypervisor to real-time cell, RIMM map the
memory allocated by Jailhouse hypervisor into specified banks
different from those of real-time cells. This is done by making
all free pages in mem_pool belong to the bank group 0 in the
enable stage, so that the memory allocated by Jailhouse belong
to bank group O during runtime.

IV. EVALUATION

In this section, we describe the experimental platform used
in our experiments, and then a series of experiments have been
performed on the Raspberry Pi 4 to assess the performance
isolation and real-time achieved by our proposed solutions.
All experiments are repeated three times, and their averages
are used.

A. Experimental Setup

Table I lists the major parameters of the processor and
DRAM memory of Raspberry Pi 4 used in this paper. As
shown in the table, the Raspberry Pi 4 uses a quad-core ARM
Cortex-A72 processor with 32 KB L1 Data cache, 48 KB
L1 Instructions cache and 1 MB L2 cache. As mentioned in
section 3.1, we divide all 16 banks into two groups, each bank
group contains 8 banks, namely 2GB memory.

We used Jailhouse 0.12 to create two cells, the real-time
cell used for measuring and the non real-time cell used to
generate interference. Each cell is assigned one core, and both
cells host Linux 5.4. The evaluation focuses on comparing the
native Jailhouse with the modified one integrating the isolation
capabilities.

Cyclictest is part of the rt-tests and is designed to measure
real-time performance. The Isol-Bench benchmark [14] con-
sists in accessing a portion of memory with a size of N KB
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TABLE I
ADDRESS MAPPING OVERHEAD

Size (MB)  the native (ms) RJMM (ms) Increase
1 0.0648 0.0938 45%
4 0.2441 0.3532 45%
16 1.0186 1.4387 41%
64 4.0682 5.7532 41%
256 16.2878 23.0213 41%
12000 — native jailhouse
10000 — RiMM
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Fig. 3. The cumulative distribution function (CDF) of the frequency.

for M times in a sequential manner. we use it to evaluate the
isolation performance of RIMM.

B. Implementation Overhead

Compared with unmodified Jailhouse, the overheads intro-
duced by RIMM comes from the creating of address mapping
for cells during the cell creating phase. To evaluate the
introduced overhead of RIMM, we measure the total time to
complete the address mappings of memory regions of different
sizes.

Table II shows the address mapping times of the native
Jailhouse and RJMM during the phase of creating a cell, with
the sizes of address regions varying from 1 MB to 256 MB
with steps of 4 MB.

We can find from the table that although the address
mapping times of RIMM is more than 40% of that of the
native Jailhouse, It is worth noting that the mapping of GPA to
HPA occurs only once during the lifetime of a cell. Therefore,
once the address mapping of a cell has been accomplished,
RIMM will not lead to any runtime overhead to the cell.

C. Real-time

In this experiment, we make use of Cyclictest as benchmark
to conduct real-time evaluation of RIMM [15]. The non real-
time cell is configured to continuously access 16 MB of
memory to generate inter-cell memory interference, and then
We run Cyclictest on the real-time cell to compare the latency
of the native and modified Jailhouse hypervisor.

The cumulative distribution function (CDF) of the frequency
is illustrated in Figure 3, and Figure 4 shows the normalized
frequencies of three types under the native Jailhouse and
RIJMM (normalized to the native Jailhouse). We can see from
both figures that the latency of RIMM is less than that of the
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Fig. 5. The normalized running times.

native Jailhouse. Although the minimum latencies of RIMM
and the native Jailhouse make no difference, the average and
maximum latency of RIMM respectively went down by 73.7%
and 73.5% compared to the native Jailhouse. It illustrates that
the RIMM achieves good real-time capability compared with
the native Jailhouse.

D. Isolation Performance

In this experiment, we use Isol-Bench benchmark to investi-
gate the isolation performance of RIMM [14]. Like the previ-
ous experiment, the non real-time cell continuously access 16
MB of memory to generate inter-cell memory interference, and
then run the Isol-Bench on the real-time cell to measure the
memory access time. With the size N of the memory varying
from 16 KB to 128 KB with steps of 16 KB and the times M
of execution being 10000.

The results are shown in Figure 5, where the x-axis rep-
resents the size N and the y-axis shows the running time
normalized to the case where the Isol-Bench runs under the
native Jailhouse. From the figure, we can easily see that the
RIJMM performs better. Compared with the native Jailhouse,
RIJMM has increased the running speed of Isol-Bench by an
average of 1.5%.

V. CONCLUSION

To consolidate a mixed-criticality system into a single
multicore platform, the isolation for shared resources among



different criticality tasks is a significant challenge. In this pa-
per, we propose RIMM, a mechanism that prevents the DRAM
bank interference from non real-time cell and hypervisor to
real-time cell on multi-core platforms via bank partitioning to
enhance real-time for the Jailhouse hypervisor. We conducted a
series of experiments on our experimental platform to evaluate
the real-time and isolation performance of our mechanism.
The evaluation results show that our mechanism is effective
in improving the real-time and isolation performance of virtu-
alization. Especially, the results with the Cyclictest benchmark
show that the RIMM performs good real-time capability, and
the average and maximum latency of RIMM respectively went
down by 73.7% and 73.5% compared with the native Jailhouse.

In our current prototype, RIMM only considers DRAM
bank partitioning, which limits the effectiveness of solving
the interference problems. We believe that Integrating memory
bandwidth reservation [14] and cache partitioning [16] will
help to provide better isolation performance, which is still our
future work.
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