
Automated Security-focused Network Configuration Management: State of the Art,
Challenges, and Future Directions

Jinglu Xu1 and Giovanni Russello2
1,2The University of Auckland, Auckland, New Zealand
jxu671@aucklanduni.ac.nz, g.russello@auckland.ac.nz

Abstract—With the continuous advancements and innovation
in Information Technology (IT), new vendors and products
constantly emerge to provide networking services and solutions.
Meanwhile, the multi-vendor environment and the huge diversity
of siloed devices require new approaches to tackle the com-
plexity and heterogeneity in network configuration management.
However, the traditional way of using configuration scripts
requires domain expertise with the target system. In recent
years, many automated solutions have emerged in academia and
industry. This paper presents a literature review on the state-
of-the-art of them. It focuses on the background that led to
the development of automated techniques, summarizes domain-
specific c hallenges, a nd d iscusses r elated s tudies p ublished to
date. Finally, five r esearch g aps w ith r esearch d irections are
identified, i ncluding 1) i ntent t ranslation, 2) i ntelligent network
configuration m anagement, 3) a utomated p lanning, 4) intent-
based solutions for I2NSF, and 5) reliable network performance.

Keywords—network, security, configuration, automation.

I. INTRODUCTION

With the fast development of the networking industry, many
vendors have been developing new devices and services.
Accordingly, various protocols and technologies have emerged
rapidly, bringing along diverse new terminologies and concep-
tualizations. As a result, network configuration management
has become a complex process. Meanwhile, security plays
a vital role in network configuration a nd n eeds t o b e ad-
dressed throughout the management life cycle, which further
increases the complexity. In recent years, many research
efforts have been put into developing automated solutions to
simplify configuration m anagement t asks. S ome researchers
proposed policy-based approaches to guide network behaviour;
others developed methods based on autonomic or intent-
based networking; others again investigated constraint-based
approaches. There are also several efforts from the industry
[1], [2], [3]. This plethora of approaches makes it difficult to
get a clear picture of the fundamental properties of automated
network configuration management. To the best of our knowl-
edge, this field lacks a comprehensive review of existing work.
This paper aims to address this gap and provide researchers
interested in this subject with a solid starting point. Our main
contributions are as follows:

1) We review, classify, and compare automated security-
focused network configuration management techniques
in academia and industry.

2) We thoroughly discuss the remaining challenges and
issues in existing automated security-focused network
configuration management techniques.

3) We identify several research gaps in this field and point
out future research directions.

The rest of this paper is organized as follows. Section 2
gives an overview of security-focused network configuration
management. Section 3 describes the significant contributions
of academia and industry while providing insights into the
remaining challenges. Section 4 summarizes the findings and
identifies research gaps with research directions. Finally, we
conclude this paper in Section 5.

II. AN OVERVIEW OF SECURITY-FOCUSED NETWORK
CONFIGURATION MANAGEMENT

Before examining different techniques in this subject, we
should clarify the meaning and understand its value. This
section establishes a standard definition of security-focused
network configuration management and provides a historical
view of its development.

A. Security-Focused Network Configuration Management Def-
inition

Planning
Identifying and
implementing
configurations

Controlling
configuration

changes
Monitoring

Fig. 1. Security-Focused Configuration Management Phases. Source: Adapted
from [4].

The National Institute of Standards and Technology (NIST)
defines security-focused configuration management as “the
management and control of configurations for systems to
enable security and facilitate the management of information
security risk.” [4] As shown in Fig. 1, they summarize the
life cycle consists of four phases: 1) planning, 2) identifying
and implementing configurations, 3) controlling configuration
changes, and 4) monitoring. In NIST’s definition, configuration
items can be any elements that compose the information
system. It is such a broad topic that we cannot cover everything
in a single paper. Therefore, we adopt NIST’s management life

409

2022 9th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/22/$31.00 ©2022 IEEE
DOI 10.1109/DSA56465.2022.00061

cycle but limit the scope to network components. Security-
focused network configuration management in this context is
defined as “a process for planning, establishing, maintaining,
and monitoring network configuration with the focus on net-
work security.”

B. Script-Based Network Configuration Management

The most traditional way of configuring network settings
is through scripts. Most enterprise networks these days are
built from devices manufactured by different vendors. How-
ever, the move to a network configuration standard is long
overdue. So far, various terminologies and frameworks have
been developed by vendors to allow device-to-device commu-
nication. Accordingly, different programming languages have
been created for human-to-device interaction. Writing scripts
has become challenging as their syntax and semantics are
specific to each configuration environment. To address the
heterogeneity problem, the Internet Engineering Task Force
(IETF) proposed the Simple Network Management Protocol
(SNMP) standard [5] that could collect information about
network devices and services in a manner not bound to a
particular manufacturer. In SNMP, every piece of information
is an object with a unique identifier called Object Identifier
(OID). The Management Information Base translates an OID
into human-readable information, including names, definitions,
and object descriptions. SNMP has been widely adopted due
to its simplicity, but the problem is not many objects support
the write operation. In practice, SNMP is mainly used to
monitor devices and gather operational statistics rather than
manage network configurations. After the IETF became aware
of this situation, they published a multi-vendor configuration
protocol NETCONF [6] with a programming language YANG
[7]. NETCONF is designed explicitly for network configura-
tions and can push configurations on devices from different
vendors in a transactional manner. It can also test and validate
configurations before the final commit. Although NETCONF
has been proposed for more than ten years, its adoption has
been slow in the network industry. The main reason is that
the cost of replacing existing protocols is massive, and device
vendors and service providers tend to create products based
on existing vendor-specific protocols and languages. Overall,
current configuration standards are not as effective as expected,
requiring administrators to learn different scripting languages
and get accustomed to product manuals.

Take Away 1: Script-based network configuration man-
agement requires a lot of human interpretation and
expertise. It does not scale and limits organizational
agility.

C. Automated Network Configuration Management

Where possible, automated tools are used to simplify net-
work configuration management through its life cycle. At
the highest level, they can form the knowledge base of
domain experts captured in product manuals and automate

the operations that a human operator would have performed.
At the lowest level, they do not require administrators to
code in device-specific languages but allow them to express
configuration requirements in a more natural and intuitive way.
Over the years, with the evolution of autonomic network-
ing, Software-Defined Networking (SDN), Network Func-
tion Virtualization (NFV), Artificial Intelligence (AI), and
Machine Learning (ML), several automated techniques have
appeared in academia and industry. Autonomic networking-
based configuration management achieves self-managing by
design via building autonomic networking architectures. The
innovation lies in continuously monitoring the network state
and adapting to changes. As goals and needs vary from busi-
ness to business, companies and organizations face challenges
translating best practices into situated practices. Policy-based
configuration management enables such translation as business
rules can be embedded within the policies to govern the
behaviour of network devices. This is especially helpful for
making configuration changes as it can be done by modifying
policies instead of re-coding. Constraint-based configuration
management abstracts away the procedure of implementing
a configuration requirement. It automates the implementation
phase by reducing requirement analysis to a constraint sat-
isfaction problem. In this way, the computation of configu-
ration solutions is left to the system. Configuration conflicts
and inconsistencies caused by changes can be automatically
detected by examining the mathematical results. The recent
advances in intent-based configuration management provide
the highest level of abstraction on protocols and hardware. It
ties intents directly to device-native configurations, and thus
the need to manually deploy policies device-by-device goes
away. In addition, it can automate administrative tasks across
a network based on changing business goals. Despite being
called by different terminologies, all these techniques share
the ultimate goal of minimizing human intervention. On the
other hand, they still have some challenges and issues. In the
next section, we will discuss them in more detail.

III. SOLUTIONS FOR AUTOMATED SECURITY-FOCUSED
NETWORK CONFIGURATION MANAGEMENT

In this section, we first explain the sources and methodology
that we used to select relevant literature. After that, we classify
existing solutions into different categories and discuss them in
detail.

A. Source Selection and Categorization

Automated network configuration management has received
increasing attention from both academia and industry. There-
fore, we used Google Scholar and Google as primary sources
to search for relevant academic papers and technical articles. In
addition, we searched research databases (e.g., IEEE Xplore,
ACM Digital Library, Springer Link) and peer product review
websites (e.g., Gartner Peer Insights, G2Crowd, IT Central
Station) with the following keywords: ((network OR security)
AND automation) OR ((autonomic OR policy OR solver OR
intent) AND (network OR security)). Also, we have limited

410

our scope to recent work from 2000. We then discarded
papers clearly unrelated to the subject based on the paper
abstract or product description. Particularly, we focused on
papers discussing network security topics such as packet
filtering. After the filtering process, 36 publications matched
our requirements. We classify the resulting literature into
five categories: autonomic networking-based, policy-based,
constraint-based, intent-based, and other industrial solutions.

Fig. 2. Percentage of Solutions by Type of Technique.

As shown in Fig. 2, the autonomic-networking based tech-
nique accounts for 11% of all solutions. Autonomic net-
working was introduced more than 15 years ago. Still, not
many related academic papers have been published because
1) the concept of autonomic computing was firstly introduced
in the industry [8], and 2) autonomic networking requires
changes to the overall network architecture (e.g., standards,
protocols). This topic is too big to be carried out by in-
dependent researchers, and thus all associated architectural
solutions were large research projects funded by federal states
or standardization organizations. The policy-based technique
takes up 31% of the total solutions. Policy-based management
has also been around for a long time since its first appearance
[9]. Over the years, this technique has been widely used in the
network security domain, such as firewalls. It is interesting
to note that we found two works [10], [11] combining the
autonomic networking-based and policy-based techniques. We
believe this was in response to autonomic networking lacking
a way to tie business goals to low-level configurations. As
this approach uses policy-based management in the autonomic
networking architecture, we consider it falls into the policy-
based management domain. The constraint-based technique
is based primarily on computer science fundamentals, so
it was mainly conducted by independent researchers from
the computer science discipline. Intent-based solutions are
relatively new, but this technique has received much attention
(i.e., it accounts for 17% of the total solutions). This is
because the new spring of AI and ML made this approach
more practical. Other industrial solutions make up 22% of all
solutions. Network automation has always been a popular topic
in the industry, and we believe there are more products on the
market. Due to space limitations, we only focus on solutions
proposed by leading companies in this sector. The rest of this
section will discuss each category’s related work separately.

B. Automated Security-Focused Network Configuration Man-
agement Techniques

1) Autonomic Networking-Based Configuration Manage-
ment: To reduce the complexity of the IT components caused
by the industry’s exploitation of new technologies, IBM [8]
first presented the vision of autonomic computing in 2001.
It refers to the ability of computers to manage themselves
automatically through adaptive technologies and minimize the
time needed by IT professionals to solve system difficulties
and other maintenance problems. A computing system is
considered autonomic if it supports self-configuration, self-
healing, self-optimization, and self-protection (self-CHOP).
Accordingly, they [16] introduced an autonomic system con-
taining five building blocks: 1) an autonomic manager im-
plements the Monitor-Analyze-Plan-Execute over a shared
Knowledge control loop, 2) a knowledge source provides
access to shared knowledge based on the interfaces prescribed
by the architecture, 3) a touch point exposes the state and
management operations for a resource in the system, 4) a
manual manager provides the user interface where an IT
professional can perform management functions manually, and
5) an enterprise service bus integrates other building blocks
by directing the interactions among them. IBM’s blueprint
provided a general architecture for autonomic computing and
inspired other research fields such as autonomic networking.
Several research initiatives have emerged on building generic
autonomic network architectures. Table 1 summarizes the
domain-specific challenges and related work.

In 2007, Tschudin et al. developed a framework called
autonomic network architecture (ANA) [12]. It contains a
set of ANA nodes. Each node consists of a MINMEX, a
playground, and a hardware abstraction layer that provide
various services to facilitate network management tasks. The
highlight of their work was that they introduced the compart-
ment abstraction that allowed the division of communication
networks into smaller and more easily manageable units. Com-
partments contain three abstractions types: Functional Blocks,
Information Channels, and Information Dispatch Points. All
members agree on some common set of operational and policy
rules assigned to a specific compartment. Each compartment
has autonomy regarding the communication principles and
protocols to handle inter- and intra-communication. In [17],
they gave details about the resilience and security framework.
Chaparadza et al. proposed a conceptual architectural reference
model called the Generic Autonomic Network Architecture
(GANA) [13]. Self-management is achieved via instrumenting
the network components with autonomic Decision-making-
Elements (DEs) that collaboratively work together. It contains
a Decision Plane that makes all decisions towards a node’s
behaviour and network-wide control. The Decision Plane con-
sists of a hierarchy of DEs split into protocol, function, node,
and network levels. Higher-level DEs manage lower-level
DEs through control loops. Neves et al. proposed SELFNET
framework [14] that aimed to combine autonomic management
with SDN and NFV technologies. SELFNET framework is

411

TABLE I
AUTONOMIC NETWORKING-BASED CONFIGURATION MANAGEMENT CHALLENGES AND RELATED WORK.

Challenge Solution
Self-configuration: To automate the process of configuring network components under varying and unpre-
dictable conditions without disturbing the network performance.

[12], [13], [14], [15]

Self-healing: To detect and fix failure components, predict issues, and take proactive actions to discourage
errors from impacting the system.

[13], [14]

Self-optimization: To improve performance by optimizing resource allocations and workloads dynamically at
all times while keeping the complexity hidden.

[12], [13], [14]

Self-protection: To proactively detect, identify, and protect users and data against malicious attacks and threats. [12], [14], [15]

a six layers architecture. The Self-Organizing Network layer
achieves autonomic management. It consists of four sublay-
ers: Monitor and Analyzer, Autonomic Management, VNFs
Onboarding, and Orchestrator. The Autonomic Management
sublayer uses the Tactical Autonomic Language to define the
autonomic strategies to guide the automatic actions. It uses
AI, data mining, and stochastic algorithms to handle network
problems in both reactive and proactive manners. Despite years
of research, existing autonomic networking frameworks have
no large-scale adoption. The need for standards is obvious as
autonomic networking is too big to be solved by individual
initiatives. Under such circumstances, in 2015, the Internet
Research Task Force (IRTF) proposed the definitions and
design goals for autonomic networking [18] intending to define
a common Autonomic Networking Infrastructure (ANI). They
briefly described an autonomic network wherein autonomic
nodes communicated through an Autonomic Control Plane.
An autonomic node implements the ANI and contains several
autonomic functions built from Autonomic Service Agents
(ASAs). It requires no configuration and can derive all required
information through self-knowledge and knowledge discovery.
Following the IRTF’s document, Cisco [19] launched Inter-
network Operating System software with the ANI feature,
which supported the autonomic discovery of connectivity and
identity of new devices. Started with RFC 7575 [18], the
IETF formed the Autonomic Networking Integrated Model
and Approach (ANIMA) Working Group [20]. In 2021, they
completed the final version of the autonomic networking
reference model [15] as the first phase of their standardization
process. Meanwhile, they published a series of RFCs to give
more details about the building blocks of their reference
model, including ASAs [21], GeneRic Autonomic Signaling
Protocol (GRASP) [22], Autonomic Control Plane (ACP) [23],
and Bootstrapping Remote Secure Key Infrastructure (BRSKI)
[24]. With these the IETF standards, we hope standardized
deployment practices will appear in the industry soon.

Autonomic networking-based configuration management
achieves automation in terms of self-CHOP properties. Its
self-healing and self-protection nature can secure the network
at the infrastructure level. Still, it entails a few issues and
concerns. Existing architectural frameworks, including the
IETF’s standards, have not been fully implemented yet. Cisco
is among the first to apply autonomic networking features
in their products, but manual configuration is greatly needed
in the management process. Besides, existing approaches

mention little about how to fulfil organizational configuration
requirements. These requirements can significantly impact
security control implementation. As a result of lacking the link
between requirements and implementation, it is impossible to
directly reconfigure network components in response to new
security needs. We believe the cause of this problem is because
autonomic networking is a technical concept and all these
frameworks are technology-specific. In real-world settings,
configuration management is not only driven by best practices
but also by business objectives and goals. The following
section will discuss the policy-based network management
introduced to solve this issue.

Take Away 2: Autonomic networking-based configura-
tion management realizes self-CHOP properties at the
infrastructure level. However, it does not tie up low-
level configuration with high-level requirements.

2) Policy-Based Configuration Management: The concept
of policy-based management has been around for a long time
since its first appearance [9]. In 1998, the IETF formed the
Policy Framework Working Group [34] and published stan-
dards for defining a policy framework and information model
[35], [36]. In this technique, organizations define policies to
govern the behaviour of network components in response
to business objectives and environmental changes. Policies
are typically expressed in a policy language that provides
systematic means to create, implement, and enforce policies
for managed network resources. Policy languages formalize
the definition of different network elements’ operations in
response to configuration changes. In its simplest form, a
policy-based management system contains a policy repository
for storing policies, a Policy Decision Point (PDP) for making
decisions, and a Policy Enforcement Point (PEP) for enforcing
decisions. The major challenges addressed by this approach are
referred to as the policy refinement [37] process, as shown in
Table 2.

In 2000, Yemini et al. [28] developed a network self-
management system named NESTOR. It seeks to unify config-
uration management tasks requiring changes in heterogeneous
elements at different network layers. They introduced the Re-
source Definition Language to express configuration models.
Network configuration management is automated by executing
policy scripts towards a Resource Directory Server. Boutaba
et al. [29] proposed a similar approach, but their system

412

TABLE II
POLICY-BASED CONFIGURATION MANAGEMENT CHALLENGES AND RELATED WORK.

Challenge Solution
Policy composition: To express network configuration management procedures in the form of a comprehensive
set of policies using policy languages.

[25], [26], [27]

Policy translation: To automatically translate high-level policies into low-level device-native configurations. [10], [11], [25], [26], [27], [28], [29],
[30], [31]

Policy ratification: To validate whether the resulting configurations conform to the policies and find
configuration conflicts.

[10], [30], [31], [32], [33]

was based on the Directory Enabled Networks specification.
Burns [30] developed a configuration tool for automatically
managing security policies. The policy engine inside the tool
can pre-compute configuration settings and validate policies.
NESTOR [28] is used to monitor the network and configure
network devices based on the engine’s output. Guttman and
Herzog [25] proposed rigorous automated security manage-
ment focusing on packet filtering and IPsec. It requires four
steps: networks and packets modelling, expressing security
policies, deriving algorithms to enforce security goals, and
implementing the algorithms. They used two-location filtering
statements to express the combined security policies of packet
filtering and IPsec. Enck et al. [26] proposed a network
configuration management system called PRESTO that stored
predefined policy configlets in databases. The configlets define
the services supported by the target router devices. After
receiving configuration requests for related routers, PRESTO
extracts the mapping information from databases and trans-
forms configlets into complete device-native configurations.
Chen et al. [31] introduced a management framework called
PACMAN. It contains a central component called Active
Document (AD), which is a graph representation that encodes
network management primitives and composition derived from
the method of procedure documents. PACMAN examines
network-wide policies to guarantee that the execution of
ADs does not violate network-wide constraints. Anderson et
al. proposed a policy language called NetKAT [27] which
could describe the behaviour of SDN switches mathematically.
NetKAT is based on Kleene algebra with tests wherein Kleene
algebra and Boolean algebra are used to reason about global
network structure and the predicates defining switch behaviour,
respectively. Prakash et al. introduced a way of expressing
static Access Control List (ACL) policies on SDN endpoints
using a graph model called Policy Graph Abstraction (PGA)
[32]. It enables expressing policies independent of underlying
network infrastructure and detects conflicts and errors via
policy composition. In the PGA system, administrators write
policies as graphs and submit them to the Graph Composer.
The composer composes individual policies into a combined
conflict-free policy set. Abhashkumar et al. extended PGA [32]
by introducing a system called Janus [33]. In addition to PGA’s
capabilities, Janus allows the expression and composition of
(Quality of Service) QoS and dynamic ACL policies based on
their extended policy graph model.

Additionally, two studies used policies to govern the control
loop in autonomic networking to combine the advantages

of both techniques. The IBM research group introduced a
Management for Autonomic Computing (PMAC) platform
[10] supporting the IBM autonomic computing architecture
[16]. PMAC is built on the standard Common Information
Model (CIM) policy model [38], and each policy is written in
the Autonomic Computing Policy Language. Strassner et al.
proposed the FOCALE architecture [11] based on policy-based
network management system specified in [39]. FOCALE con-
tains a Policy Manager sitting above the Autonomic Manager.
The Policy Manager is responsible for translating high-level
business requirements into low-level network configurations.
First, it uses ontologies to capture the semantics and behaviour
of network entities. After that, the model-based translation
layer translates policy actions into vendor-specific commands.

More and more service providers have provided cloud-
based security solutions in recent years. The IETF realized
the increasing adoption of cloud-based security services to
replace on-premises security tools and the technical challenges
enterprise customers face. Thus, they formed the Interface to
Network Security Functions (I2NSF) [40] Working Group,
which aimed to standardize software interfaces and data
models for controlling and monitoring aspects of physical
and virtual NSFs. They proposed a framework for I2NSF
[41] that had a Consumer-Facing Interface, which contained
a security controller [42] allowing enterprise customers to
define, manage, and monitor security policies. The controller
has a Policy Translator consisting of three components: 1)
Data Extractor uses state transitions to extract data from a
policy in XML format, 2) Data Converter searches through
NSF Database for target NSFs with the extracted data and
converts the policy into NSF-specific format, and 3) Policy
Generator uses context-free grammar to generate low-level
rules based on the YANG data model [7].

Although policy-based configuration management simplifies
management tasks by using policies to define management
procedures, it has some limitations in real-world settings.
Firstly, these policy languages are very close to programming
languages and require a steep learning curve for average
users. Secondly, this technique can only handle configuration
implementations and changes by examining predefined poli-
cies. But in real-life deployment, it is unfeasible to design
a comprehensive policy repository that covers all possible
configuration scenarios. Last but not least, as it does not enable
any declarative representation of system logic, administrators
need to explicitly declare the complete control flow of solving
a configuration requirement in terms of a series of policies.

413

Each step in the control flow must be executed in the given
order, or the requirement can never be fulfilled. To this end, we
need a more declarative, dynamic and scalable technique. In
the next section, we will explore solutions built on constraints.

Take Away 3: Policy-based configuration management
uses policies to simplify management tasks. On the
other hand, it requires administrators to learn new
policy languages and manually define a large set of
policies, making it significantly constrained by human
expertise.

3) Constraint-Based Configuration Management:
Constraint-based configuration management provides
automated modelling and reasoning about configuration
requirements. Unlike the policy-based technique explicitly
specifying all steps to achieve a requirement, the constraint-
based approach only identifies the properties of a configuration
solution to be found. Studies using this technique typically
take the logic representation of domain knowledge and
constraints as input and then dynamically compute solutions
to satisfy these constraints. Each constraint can contain
one or more configuration requirements, such as security,
performance, and reliability. The representation of domain
knowledge is formal while descriptive so that it can be
shared and reused by different vendors. Also, it needs to
hide the underlying process of solving constraints from users.
This can be achieved using an off-the-shelf solver, or new
solving algorithms are required to suit more specific domains.
Finally, it provides some mechanism to prevent network-wide
misconfigurations. We summarize this technique’s challenges
and related work in Table 3.

Narain [43] developed a Requirement Solver that could de-
termine general network configurations (e.g., addressing, rout-
ing, security) based on given network components and config-
uration requirements expressed as first-order logic constraints.
The Requirement Solver is implemented in a logical system
called Alloy [50] and solutions are found by the Alloy model
finder. Later, Narain et al. proposed another Requirement
Solver called ConfigAssure [49] which was implemented with
an SAT-based model finder called Kodkod [51]. ConfigAssure
stores network component information as tuples in a database.
Still, configuration requirements are represented as constraints.
In addition to configuration synthesis, it supports configuration
error diagnosis and repair via analysis of proof of unsolvability
and removing unsolved constraints. Based on their studies,
Homer et al. proposed MulVAL [44] to provide suggestions
for configuration changes that could mitigate threats. It reasons
about potential attack paths using an attack graph written in
Datalog, transforms it into a Boolean constraint, and solves it
using a min-cos SAT solver. Nelson and Barratt proposed a
firewall configuration management tool called Margrave [45].
In Margrave, administrators send a query to the user inter-
face, which returns a set of scenarios satisfying the queried
behaviour. Margrave maps ACL, NAT, routing policies, and

user queries into first-order logic constraints. Again, Kodkod
[51] is used to generate device configuration satisfying the
query. Delaet and Joosen [46] introduced an object-oriented
policy language named PoDIM that supported the modelling
of cross-machine constraints. It consists of a rule language
and a domain model describing configuration constraints and
the domain of the rules, respectively. In PoDIM, network
components such as devices and interfaces are defined as
different object classes in the domain models. A translation
controller is responsible for generating objects for rules, creat-
ing configuration files from objects, and deploying the files on
target devices. Chen et al. proposed a management framework
named COOLAID [47]. It uses a logic-based language based
on Datalog to formalize domain knowledge from both device
vendors and service providers, which is then applied on top
of a database-like abstract data model representing network
information. It uses constraints to detect and prevent network-
wide misconfigurations. Network changes are carried out by
modifying tables in the database. Soulé et al. presented a
framework named Merlin [48] to generate configurations for
SDN switches, middleboxes, and end hosts. They used logical
formulas to represent physical topology and constraints. The
Merlin compiler maps configuration policies into a constraint
problem and solves them using parameterizable heuristics.
It contains run-time components called negotiators that can
communicate amongst themselves to adjust configurations to
dynamically changing resource demands.

Constraint-based configuration management allows admin-
istrators to provide the least amount of input by leaving the
solving process to the system. However, it is unclear how to
generate network knowledge and constraints in an automated
way. Existing solutions require users to have sufficient mathe-
matical knowledge and manually create many supporting files
to construct them. This is not practical for most companies
as they do not have computer scientists work on-site. Also,
solving constraint problems is a computationally expensive
process that often leads to unaffordable computation times
when the network becomes large. In recent years, due to the
maturity of SDN, intent-based networking [52] has attracted
significant attention from both industry and academia. We will
discuss solutions falling in this category in the next section.

Take Away 4: Constraint-based configuration man-
agement turns complex configuration tasks into con-
straint satisfaction problems. Nevertheless, it becomes
computationally expensive when the network scales.
Also, it requires users to have sufficient mathematical
knowledge.

4) Intent-Based Configuration Management: The concept
of intent has existed in Natural Language Understanding
(NLU) for a long time. Intent is a high-level declarative
policy that describes the outcome of an action. In intent-based
configuration management, human operators do not focus
on individual devices. Instead, they can define the desired

414

TABLE III
CONSTRAINT-BASED CONFIGURATION MANAGEMENT CHALLENGES AND RELATED WORK.

Challenge Solution
Domain knowledge reasoning: To define a formal specification to describe knowledge of the configuration
domain, including network information and constraints on configurations.

[43], [44], [45], [46], [47], [48]

Configuration synthesis: To automatically solve configuration problems given network knowledge and
configuration constraints.

[43], [44], [45], [46], [47], [48], [49]

Misconfiguration prevention: To detect and prevent misconfiguration in the network, including configuration
conflicts and unsolvable constraints.

[45], [47], [48], [49]

outcomes and high-level operational goals in terms of intents,
such as “communications between network a and network b
need to be secured.” Upon receiving desired outcomes, the
system determines how to accomplish the highest-level goal
by consistently changing, tuning, substituting, or adapting sub-
level policies and implementing them across the network.
Also, it continuously monitors the network state to verify
whether the actual network status matches the one expected
by the intent. As the system has complete knowledge of the
entire network, it can adjust network operations when the
intent starts to drift. It also optimizes the current configurations
to improve the reliability of network service. The primary
function concerns and studies associated with this technique
are summarized in Table 4.

The latest network management trend is building intent-
based networking upon SDN. SDN greatly improves network
programmability by navigating a network infrastructure using
software applications. Intent-based networking raises the ab-
straction level on the Northbound Interface (NBI). It avoids
the laborious manual coding inside NBI to deal with different
configuration scenarios. Popular controllers including Open
Network Operating System (ONOS) [59] and OpenDaylight
(ODL) [60] have supported intent-based NBI. On the stan-
dardization side, the IETF proposed a protocol language called
Intent-Based Network Modeling [53] (IB-NEMO) language,
which was also part of ODL’s Network Intent Composition
project. IB-NEMO is a protocol language used for interac-
tions between an application and an SDN controller. It is
specifically designed to satisfy common use cases, including
virtual wide-area networks, virtual data centres, bandwidth
on demand, and service chaining. Han et al. proposed an
intent-based management platform [54] for managing virtual
network technologies in SDN. They defined each intent ob-
ject to require resources, conditions, priority, and instruction
attributes. They also introduced the concept of a vocabulary
store for mapping intent entities and low-level configurations.
Kiran et al. developed an intent renderer application named
iNDIRA [55] as an intermediate layer between SDN NBI and
users. It can translate network provisioning and file transfer
requirements into network commands and execute them on the
Network Service Interface and Globus [61] data transfer tools.
In iNDIRA, users interact with a chatbot to send configuration
intents in natural language via the user interface. It uses natural
language processing (NLP) to extract intent entities and con-
structs ontologies to represent relationships between services
and their arguments. Intent ontologies are then rendered into

network-specific commands via the SDN controller. Jacobs
et al. proposed a similar chatbot application for configuring
SDN rules [62]. It uses NLP and a sequence-to-sequence
learning model to construct configuration requirements in
an intent language called NILE. Based on NILE, they used
Named Entity Recognition for intent entities extraction and
represented another intent translation application called LUMI
[56]. LUMI is served as an intermediate layer between natural
language and policy language Merlin [48]. To detect configu-
ration contradictions, they used a Random Forest Classifier to
correlate the NILE intents and search for incremental intent
deployment.

In the industrial space, several commercial products have
influenced the adoption of intent-based networking. As a
leading networking company, Cisco introduced Cisco Dig-
ital Network Architecture (DNA) [57] software that could
translate high-level business intent into zero-trust policies. It
can achieve several fundamental management tasks, includ-
ing managing software updates, discovering network devices,
monitoring, and troubleshooting. Cisco devices are inherently
aware of Cisco DNA. It also includes multi-vendor software
development kits that allow interactions with other vendors’
network devices. ML techniques are used to provide accurate
insights into network deployment and predict future network
performance. Juniper Networks acquired an intent-based net-
working startup Apstra [58] in December 2020. In May 2021,
they released Apstra 4.0 software which injected intent-based
networking and automated closed-loop validation into its data
centre networking portfolio. Juniper’s Apstra solution provides
a deployment method called connectivity templates, which
allow administrators to create and reuse validated templates
to set up multi-vendor networks. It supports multiple device
operation systems, including Cisco NX-OS, Nvidia Cumulus,
and Juniper Junos OS.

Intent-based configuration management is perhaps the most
human-friendly solution due to its highest level of abstraction
from any protocol and vendor. In addition, it can automate
administrative tasks across a network under changing orga-
nizational goals and needs. However, just like the beginning
of any other network innovation, a few challenges remain. So
far, academic studies have mainly focused on proposing intent
renderers on top of NBI. Due to the lack of standardization
of NBI API or intents, the ways of specifying intents are
defined separately, and thus these renderers are limited to their
own use cases. Meanwhile, commercial products typically
provide a more comprehensive framework containing mature

415

TABLE IV
INTENT-BASED CONFIGURATION MANAGEMENT CHALLENGES AND RELATED WORK.

Challenge Solution
Intent translation: To extract entities from configuration intents in natural language utterances and break them
down into a set of non-conflicting policies or configurations.

[53], [54], [55], [56], [57], [58]

Network state awareness: To create a system knowledge base including information about the current network
state and continuously observe it.

[57], [58]

Intent assurance: To continuously diagnose and adjust configurations as needed to ensure the original
configuration intents are always fulfilled.

[57], [58]

APIs and rich capabilities. They all offer a Graphical user
interface (GUI) where administrators can centrally configure
their network resources. GUI makes the configuration job
much more user-friendly by hiding the underlying commands.
However, the configuration itself is still carried out at the
device level. Although these products are claimed to support
vendor-agnostic management, a great percentage of the func-
tionalities are not working on third-party devices. For example,
Cisco DNA only provides very basic visibility, interaction
and monitoring for non-Cisco devices. This is not ideal
given the heterogeneity of networks in real-world production
environments. Despite the high price tag, they have limited
intent-based networking capabilities and still put humans in
the centre of the control loop.

Take Away 5: Intent-based configuration management
uses organizational goals and needs to drive low-
level configuration. Compared to other techniques, it
creates the highest level of abstraction and thus greatly
improves the ease of managing configuration.

5) Other Industrial Solutions: In recent years, several in-
dustrial all-in-one configuration management tools have been
developed to support multi-vendor network operations. These
tools focus on automating repetitive day-to-day configura-
tion tasks, including basic provisioning, performance monitor-
ing, upgrades and patches, and configuration backups. They
typically come with a web-based user interface containing
provisioning configlet and script templates across multiple
vendors. Administrators can use them directly or customize
and then execute them on devices. Some of these tools were
developed by network device vendors [63], [64], [65]. They
usually provide full control of their own physical devices while
integrating third-party configuration components into the con-
trol panels. For example, FortiManager can centrally manage
the configurations of multiple Fortinet devices from a single
console. Although it does not support direct configuration
on devices from other vendors, its security fabric connector
allows integration and automation with third-party vendors
such as Cisco pxGrid [66] and Clearpass [67]. Meanwhile,
some IT solution companies have proposed several cross-
vendor software [68], [69], [70], [71], [72]. Overall, these
industrial solutions are still script-based, but they simplify the
tasks by providing off-the-shelf templates and a centralized
control panel.

IV. DISCUSSION AND FUTURE DIRECTIONS

Table 5 summarizes existing solutions according to the
category, specialization, and management phase (discussed in
Section 2). For the sake of readability, we use numbers to
denote the phases. Having discussed different techniques, in
this section, we compare them using the specialization and
phase criteria to gain further insights. Note that we do not
include solutions belonging to the other industrial solutions
category. The main reason is it is difficult to examine their
functionalities in detail as they are not open-source. After that,
we suggest some research directions based on our findings.

Fig. 3. Percentage of Solutions to Different Specialization by Type of
Technique.

First, we studied various specializations that each technique
covered. Looking at the specialization criterion in Fig. 3,
solutions for general network services played a dominant
role across all of these techniques. General network services
refer to any type of network configuration task. Solutions
fell into this specialization attempted to generalize network
services. They did not specify their work domain and aimed
to solve various configuration jobs as a whole. This is espe-
cially the case for autonomic networking-based solutions as
they typically focus on the entire network architecture. The
policy-based technique demonstrated a strong ability to solve
domain-specific problems in network security such as ACL.
ACL uses a set of rules defining conditions of permitting or
denying actions and thus can naturally fit into the policy-based
paradigm. The constraint-based technique was also used in
various domains thanks to its ability to represent different
types of knowledge using logic. The intent-based approach
mainly focused on SDN NBI as SDN has already provided
vendor-independent control over the entire network from a

416

TABLE V
SUMMARY OF AUTOMATED NETWORK CONFIGURATION MANAGEMENT SOLUTIONS.

Solution Category Specialization Phase
[12], [14], [15] Autonomic networking-based General network services 3, 4
[13] Autonomic networking-based Routing, QoS, Monitoring 3, 4
[10], [11] Policy-based General network services 2, 3, 4
[25] Policy-based Packet filtering, IPsec 2
[26] Policy-based General network services 2
[27] Policy-based Access control, Routing 2
[28], [29] Policy-based General network services 3
[30] Policy-based Access control 3
[31] Policy-based General network services 2, 3
[32] Policy-based ACL 3
[33] Policy-based QoS, ACL 3
[43], [47], [49] Constraint-based General network services 2, 3
[44] Constraint-based Threat mitigation 2, 3
[45] Constraint-based ACL, NAT, Routing 2, 3
[46] Constraint-based General network services 2
[48] Constraint-based Bandwidth, ACL, Packet filtering 2, 3, 4
[53], [54], [55] Intent-based SDN NBI 2
[56] Intent-based SDN NBI 2, 3
[57], [58] Intent-based General network services 2, 3, 4
[63], [64], [65], [68], [69], [70],
[71], [72]

Other industrial solutions General network services 2, 3, 4

single logical point. Building an intent-based layer upon an
SDN architecture enables abstracting control commands at a
higher level, which delivers more value to both domains.

Next, we compare different techniques by network configu-
ration management phases in Table 5. Surprisingly, we found
that none of the above studies provided support for phase
1. We assume this is because the planning phase activities
(e.g., investigating organizational risk tolerance, regulatory
standards, service-level agreement (SLA), and ethical issues)
are typically conducted at the business process level. Unlike
network resources, they are not easy to be interpreted by
machines. On the other hand, as shown in Fig. 4, phases 2 and
3 have received much attention from the research community.
The reason is activities in these two phases contain most of
the technical challenges in network configuration management.
Notably, the intent-based technique was proposed to create the
highest level of abstraction, so most of the solutions in this
area focused on challenges in phase 2. Conversely, phase 4
did not get much attention from researchers as it is easier to
implement, and network vendors have already developed many
mature monitoring tools.

To summarize, there are still many challenges lying in
existing techniques. The autonomic networking-based tech-
nique requires modification of the traditional Internet and
OSI model. Thus, the way toward a complete architecture
is long. The major drawback of the policy-based technique
is the complexity of creating and maintaining a large set of
policies. Also, existing policy languages are very close to
programming languages. For the constraint-based technique,
establishing network knowledge and constraints is too difficult
for average network administrators. The intent-based technique
is regarded as the most human-friendly technique so far. As
the abstraction level is increased, the standardization of a more
translatable intent language is needed. But to the best of our

Fig. 4. Technique Comparison by Network Configuration Management
Phases.

knowledge, little has been done in this respect. Meanwhile,
most commercial products are only dedicated to vendor-
specific network devices. Based on our findings, we select
five research gaps where we think researchers’ experience can
play a fundamental role. For each gap, we point out current
solutions’ limitations and outline some research directions.

A. Gap 1: Intent Translation

The lack of a standard yet expressive language for speci-
fying intents is still challenging. On the academic side, intent
semantics are typically formalized into an abstract presentation
layer (e.g., ontology, graph database) and then mapped to sub-
layer policies or configurations. The construction and mainte-
nance of such a presentation layer are cumbersome and labour-
intensive. Moreover, it often requires support from various
domain experts. For example, ontology and network experts
must collaboratively review and verify network ontologies. In

417

the industry, all major networking vendors are independently
developing their own intent-based solutions with private APIs.
Each SDN-based solution uses a controller platform that has
different approaches to intent. As conflicts of profits exist,
defining a standard way of intent-to-configuration translation
is mainly focused inside the IEFT. However, their intent
standardization efforts are still in their infancy period.

Overall, due to the current complexity involved in network
configuration, it is impossible to define a universal intent
definition language that can be applied to any configuration
scenario. We believe a more promising way is to abstract the
intent representation further using AI-based techniques. The
main idea is to allow users to express security-related opera-
tional goals in a natural language and then dynamically gener-
ate configuration scrips or sub-layer policies. Recent advances
in AI and ML offer an opportunity to adopt this idea in the
coming years. Particularly, NLP has demonstrated promising
performance in translation between natural languages [73] and
programming languages [74]. Generative Pre-trained Trans-
former 3 (GPT-3) [75], a neural-network-powered language
model trained by OpenAI, represents a breakthrough in NLP.
The API is claimed to be able to generate any kind of text that
is indistinguishable from what a human can produce. It can
potentially translate natural language into any programming
language, such as Unix commands (e.g., Natural Language
Shell Demo [76]) and JSX (e.g., Debuild [77]). What’s more,
it does not require further training for distinct language tasks
since its training data are comprehensive. We believe using
NLP is a promising way to convert natural language queries
to various policy languages or even configuration scripts on the
fly. One future work direction would be to verify the feasibility
of using modern NLP technologies in intent translation.

B. Gap 2: Intelligent Network Configuration Management

When the desired secure state starts to drift due to environ-
mental changes, the configuration management system should
be able to resolve conflicts between desired outcomes and
the current network state and then generate new configuration
solutions without delay. Both autonomic networking-based
and intent-based configuration management addressed such
requirements via different approaches. The former focused on
designing an autonomous closed control loop, whereas the
latter suggested intent-driven configuration change control. We
believe using intents to guide autonomic networking-based
configuration management can take advantage of both tech-
niques. In fact, [15] has addressed intents as a future feature for
autonomic networking. The IEFT suggested intent refinement
could be achieved via policies following the event-condition-
action (ECA) paradigm. However, ECA-based policies have
limited adaptability to changes. We think their approach may
not fully tap the potential of the intent-based technique. To
this end, we consider a more intelligent way to guide the
control loop via ML. For example, Reinforcement Learning
(RL) introduces intelligent agents that can decide what actions
to take to achieve a long-term reward. This principle allows
an RL-enabled configuration management system to have

the potential to automatically learn and adapt to the time-
changing network environment to assure the highest-level
intent continuously. Another example is using Deep Learning
(DL) to predict the actions of human experts for subsequent
automation. Future studies may explore the potential of using
these ML technologies to deliver a continuous learning system
with configuration intelligence.

C. Gap 3: Automated Planning

In an organization, technical people usually think about
planning at the system level. They focus on translating tech-
nical best practices into situated practices. On the other hand,
non-technical people focus on planning at the organizational
level. It includes translating laws, regulations, etc., from higher
authorities into organizational documents and practices. It is
cliche but true that a communication barrier exists between
these two groups of people. Consequently, the resulting con-
figurations may not reflect the overall organizational security
needs and even violate business rules or official regulations.

The emergence of policy-based and intent-based configu-
ration management aimed to solve this problem. However,
translating business rules into technical requirements is often
challenging and error-prone, and existing studies still depend
on the knowledge base captured in technical documents. To the
best of our knowledge, none of the current work focused on
facilitating planning at the organizational level. Despite years
of study, there is a gap between business requirements and
actual implementations. An important future direction is to
provide mechanisms to automate planning activities at both
levels. We believe NLP again has the potential to help in
closing this gap by interpreting high-level business rules and
translating them into machine-actionable items. For exam-
ple, regulatory compliance is critical to upholding business
processes’ integrity while protecting public and stakeholder
interests. Future studies can investigate using NLP techniques
to automatically extract configuration-related rules from legal
texts and map them to technical implementations.

D. Gap 4: Intent-Based Solutions for I2NSF

For many small and medium enterprises (SMEs), their
size and budgets limit the investment in a security operation
team. Therefore, SMEs tend to adopt an outsourcing stance
regarding security solutions. The IETF’s I2NSF addressed
the growing demand of organizations for outsourcing security
services to external service providers. Through the Consumer-
Facing Interface, administrators can consume network security
services hosted by one or more providers. The main problem is
that the current I2NSF framework only supports policy-based
configuration management, and each policy must be described
using the Condition-Action paradigm in XML format. For
people who do not have requisite security knowledge and
programming skills, authoring policies is still quite challeng-
ing. To help people with different expertise levels, researchers
may consider developing an approach similar to combining the
intent-based technique and SDN. That is to say, building an

418

intent layer above the Consumer-Facing Interface allows users
to use high-level intents to express security expectations.

E. Gap 5: Reliable Network Performance

Although the primary focus of these studies is to automate
different management phases, they should also minimize dis-
ruption to network performance and user experience. Solutions
based on problem-solving, AI, and ML technologies require
excessive computational capacity, memory, and power, which
can be challenging to deploy in devices with limited resources.
High computational complexity can lead to long latency or
even packet loss. It does not only impact system performance
but also can create security vulnerabilities. These days, more
and more businesses are moving to the cloud to reduce the
Total Cost of Ownership (TCO). Since cloud computing is
much more elastic than traditional networks, organizations
can move the computation process to the cloud. However,
security becomes a big concern because input data can include
sensitive information such as organizational network topology.
We recommend future work can investigate how to improve
network performance and ensure security while developing
automated solutions. For example, researchers can integrate
encryption mechanisms into existing solutions.

V. CONCLUSION

This paper provides a structured literature review of state-of-
the-art automated security-focused network configuration man-
agement techniques. We classify them into different categories,
discuss the pros and cons of each technique, and compare them
according to the specializations and phases they address.

Our study finds that the autonomic networking-based and
constraint-based techniques were once hot topics in the re-
search community. Unfortunately, both haven’t shown great
success in real-world implementations. To date, the policy-
based technique is still the most popular approach among
network administrators as it has been historically used in
network security. The rapid development of AI and ML
promoted the growth of the intent-based technique. We think it
provides users with the most declarative and dynamic way of
managing various configurations in a heterogeneous network.
Still, AI-enabled network configuration management has a
long way to go before fully delivering its potential. For
example, intent translation is only in its infancy. Among all
the techniques, we discover that no existing solution supports
the planning phase. We recommend more research is needed in
developing methods to translate business rules into technical
requirements.

REFERENCES

[1] (2021) What is network automation? Cisco. [Online]. Available: https://
www.cisco.com/c/en/us/solutions/automation/network-automation.html

[2] (2021) What is network automation? Fortinet. [Online]. Available:
https://www.fortinet.com/resources/cyberglossary/network-automation

[3] (2021) Juniper automation. Juniper Networks. [Online]. Available:
https://www.juniper.net/us/en/solutions/automation.html

[4] A. Johnson, K. Dempsey, R. Ross, S. Gupta, and D. Bailey, “Guide
for security-focused configuration management of information systems,”
NIST Special Publication 800-128, vol. 800, no. 128, pp. 1–99, 2011.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),” RFC 1157, 1990.

[6] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
configuration protocol (NETCONF),” RFC 6241, 2011.

[7] M. Bjorklund, “YANG - a data modeling language for the NETCONF,”
RFC 6020, 2010.

[8] P. Horn. (2001) Autonomic computing: IBM’s perspective on the state
of information technology. IBM. [Online]. Available: https://homeosta
sis.scs.carleton.ca/∼soma/biosec/readings/autonomic computing.pdf

[9] M. Sloman, “Policy driven management for distributed systems,” Journal
of Network and Systems Management, vol. 2, no. 4, pp. 333–360, 1994.

[10] D. Agrawal, K. Lee, and J. Lobo, “Policy-based management of net-
worked computing systems,” IEEE Communications Magazine, vol. 43,
no. 10, pp. 69–75, 2005.

[11] J. Strassner, N. Agoulmine, and E. Lehtihet, “FOCALE: A novel auto-
nomic networking architecture,” International Transactions on Systems
Science and Applications, vol. 1, pp. 1–13, 2006.

[12] C. Tschudin, C. Jelger, G. Bouabene, G. Leduc, L. Peluso et al., “ANA
project: Autonomic network architecture,” 2007.

[13] R. Chaparadza, S. Papavassiliou, T. Kastrinogiannis, M. Vigoureux,
E. Dotaro et al., Creating a viable Evolution Path towards Self-
Managing Future Internet via a Standardizable Reference Model for
Autonomic Network Engineering. IOS Press, 2009.

[14] P. Neves, R. Calé, M. Costa, C. Parada, B. Parreira et al., “The SELF-
NET approach for autonomic management in an NFV/SDN network-
ing paradigm,” International Journal of Distributed Sensor Networks,
vol. 12, no. 2, pp. 1–17, 2016.

[15] M. Behringer, B. Carpenter, T. Eckert, L. Ciavaglia, and J. Nobre, “A
reference model for autonomic networking,” RFC 8993, 2021.

[16] (2005) An architectural blueprint for autonomic computing. IBM.
[Online]. Available: \urldef{\webmaccom}\url{https://www-03.ibm.c
om/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf}

[17] J. Sterbenz, M. Schöller, A. Jabbar, and D. Hutchison, “ANA resilience
framework,” 2007.

[18] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter et al.,
“Autonomic networking: Definitions and design goals,” RFC 7575, 2015.

[19] (2017) Configuring autonomic networking. Cisco. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3650/softwa
re/release/16-12/configuration guide/sys mgmt/b 1612 sys mgmt 365
0 cg/configuring autonomic networking.pdf

[20] Autonomic networking integrated model and approach (ANIMA).
The Internet Engineering Task Force. [Online]. Available: https:
//datatracker.ietf.org/wg/anima/documents/

[21] B. Carpenter, L. Ciavaglia, S. Jiang, and P. Peloso, “Guidelines for
autonomic service agents,” draft-ietf-anima-asa-guidelines-01, 2021.

[22] C. Bormann, B. Carpenter, and B. Liu, “GeneRic autonomic signaling
protocol (GRASP),” RFC 8990, 2021.

[23] T. Eckert, M. Behringer, and S. Bjarnason, “An autonomic control
plane,” RFC 8994, 2021.

[24] M. Pritikin, M. Richardson, T. Eckert, M. Behringer, and K. Watsen,
“Bootstrapping remote secure key infrastructure (BRSKI),” RFC 8995,
2021.

[25] J. Guttman and A. Herzog, “Rigorous automated network security
management,” International Journal of Information Security, vol. 4, no.
1-2, pp. 29–48, 2005.

[26] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel et al., “Configuration
management at massive scale: System design and experience,” IEEE
Journal on Selected Areas in Communications, vol. 27, no. 3, pp. 323–
335, 2009.

[27] C. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen et al., “NetKAT:
Semantic foundations for networks,” ACM SIGPLAN Notices, vol. 49,
no. 1, pp. 113–126, 2014.

[28] Y. Yemini, A. Konstantinou, and D. Florissi, “NESTOR: An architec-
ture for network self-management and organization,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 5, pp. 758–766, 2000.

[29] R. Boutaba, S. Omari, and A. Virk, “SELFCON: An architecture for self-
configuration of networks,” Journal of Communications and Networks,
vol. 3, no. 4, pp. 317–323, 2001.

[30] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao et al., “Automatic
management of network security policy,” in DISCEX ’01, vol. 2. New
York: IEEE, 2001, pp. 12–26.

[31] X. Chen, Z. Mao, and J. Merwe, “PACMAN: A platform for automated
and controlled network operations and configuration management,” in
CoNEXT ’09. New York: ACM, 2009, pp. 277–288.

419

[32] C. Prakash, J. Lee, Y. Turner, J. Kang, A. Akella et al., “PGA: Using
graphs to express and automatically reconcile network policies,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 29–42,
2015.

[33] A. Abhashkumar, J. Kang, S. Banerjee, A. Akella, Y. Zhang, and
W. Wu, “Supporting diverse dynamic intent-based policies using Janus,”
in CoNEXT ’17. New York: ACM, 2017, pp. 296–309.

[34] Policy framework working group. The Internet Engineering Task Force.
[Online]. Available: https://datatracker.ietf.org/wg/policy/documents/

[35] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn et al.,
“Terminology for policy-based management,” RFC 3198, 2001.

[36] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model,” RFC 3060, 2001.

[37] J. Moffett and M. Sloman, “Policy hierarchies for distributed systems
management,” IEEE Journal on selected areas in communications,
vol. 11, no. 9, pp. 1404–1414, 1993.

[38] Common information model. The Distributed Management Task Force.
[Online]. Available: https://www.dmtf.org/standards/cim

[39] J. Strassner and J. Strassner, Policy-Based Network Management: Solu-
tions for the Next Generation. USA: Morgan Kaufmann, 2004.

[40] Interface to network security functions (i2nsf). The Internet Engineering
Task Force. [Online]. Available: https://datatracker.ietf.org/wg/i2nsf/do
cuments/

[41] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for interface to network security functions,” RFC 8329, 2018.

[42] J. Jeong, P. Lingga, J. Yang, and C. Chung, “Security policy translation
in interface to network security functions,” draft-yang-i2nsf-security-
policy-translation-08, 2021.

[43] S. Narain, “Network configuration management via model finding,” in
LISA ’05, vol. 19. USA: USENIX Association, 2005, pp. 15–15.

[44] J. Homer, X. Ou, and M. McQueen, “From attack graphs to automated
configuration management - an iterative approach,” Kansas State Uni-
versity, Tech. Rep., 2008.

[45] T. Nelson, C. Barratt, D. Dougherty, K. Fisler, and S. Krishnamurthi,
“The Margrave tool for firewall analysis,” in LISA ’10. USA: USENIX
Association, 2010, pp. 1–18.

[46] T. Delaet and W. Joosen, “PoDIM: A language for high-level configu-
ration management,” in LISA ’07. USA: USENIX Association, 2007,
pp. 261–273.

[47] X. Chen, Y. Mao, Z. Mao, and J. Merwe, “Declarative configuration
management for complex and dynamic networks,” in Co-NEXT ’10.
New York: ACM, 2010, pp. 1–12.

[48] R. Soulé, S. Basu, P. Marandi, F. Pedone, R. Kleinberg et al., “Merlin:
A language for provisioning network resources,” in CoNEXT ’14. New
York: ACM, 2014, pp. 213–226.

[49] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” Journal of Network and Systems
Management, vol. 16, no. 3, pp. 235–258, 2008.

[50] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
USA: MIT press, 2012.

[51] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS ’07. Berlin: Springer, 2007, pp. 632–647.

[52] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-based
networking - concepts and definitions,” draft-irtf-nmrg-ibn-concepts-
definitions-00, 2019.

[53] S. Hares, “Intent-based Nemo problem statement,” draft-hares-ibnemo-
overview-00, 2015.

[54] Y. Han, J. Li, D. Hoang, J. Yoo, and J. Hong, “An intent-based network
virtualization platform for SDN,” in CNSM ’16. New York: IEEE,
2016, pp. 353–358.

[55] M. Kiran, E. Pouyoul, A. Mercian, B. Tierney, C. Guok, and I. Monga,
“Enabling intent to configure scientific networks for high performance
demands,” Future Generation Computer Systems, vol. 79, pp. 205–214,
2018.

[56] A. Jacobs, R. Pfitscher, R. Ribeiro, R. Ferreira, L. Granville, and S. Rao,
“Deploying natural language intents with Lumi,” in SIGCOMM Posters
and Demos ’19. New York: ACM, 2019, pp. 82–84.

[57] (2021) Cisco DNA center 2.2.2.0 data sheet. Cisco. [Online]. Available:
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-mana
gement/dna-center/nb-06-dna-center-data-sheet-cte-en.pdf

[58] (2021) Juniper Apstra system data sheet. Juniper Networks. [Online].
Available: https://www.juniper.net/content/dam/www/assets/datasheets/
us/en/network-automation/apstra-solution.pdf

[59] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi et al., “ONOS:
Towards an open, distributed SDN OS,” in HotSDN ’14. New York:
ACM, 2014, pp. 1–6.

[60] OpenDaylight user guide. OpenDaylight. [Online]. Available: https:
//nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master
/userguide/manuals/userguide/bk-user-guide/bk-user-guide.pdf

[61] F. I, “Globus toolkit version 4: Software for service-oriented systems,”
Journal of Computer Science and Technology, vol. 21, no. 4, pp. 513–
520, 2006.

[62] A. Jacobs, R. Pfitscher, R. Ferreira, and L. Granville, “Refining network
intents for self-driving networks,” in SelfDN ’18. New York: ACM,
2018, pp. 15–21.

[63] (2021) Fortinet FortiManager data sheet. Fortinet. [Online]. Available:
https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/fortima
nager.pdf

[64] (2020) Juniper Junos space network director data sheet. Juniper
Networks. [Online]. Available: https://www.juniper.net/content/dam/ww
w/assets/datasheets/us/en/sdn-management-operations/junos-space-ne
twork-director.pdf

[65] (2019) Huawei eSight data sheet. Huawei. [Online]. Available: https:
//e.huawei.com/en/material/esight/5a455ad5523f4bc49c3ee35e0b97fcd1

[66] (2018) Cisco pxGrid: Automate multi-platform communications
through a unified architecture. Cisco. [Online]. Available: https:
//pubhub.devnetcloud.com/media/pxgrid-api/docs/overview/Cisco pxG
rid White Paper 09192018 JE.pdf

[67] (2021) Aruba Clearpass policy manager data sheet. Hewlett Packard.
[Online]. Available: https://www.arubanetworks.com/assets/ds/DS Cle
arPass PolicyManager.pdf

[68] (2020) Solarwinds network configuration manager data sheet.
SolarWinds. [Online]. Available: https://www.solarwinds.com/- /m
edia/solarwinds/swdcv2/licensed-products/network-configuration-mana
ger/resources/datasheets/ncm-datasheet.ashx?rev=aefce2796e44431a856
ef1ba40a06f5a

[69] Network configuration manager data sheet. ManageEngine. [Online].
Available: https://download.manageengine.com/network-configuration-
manager/datasheet.pdf

[70] (2019) BMC TrueSight automation for networks data sheet. BMC.
[Online]. Available: https://documents.bmc.com/products/documents/9
6/96/469696/469696.pdf

[71] Infoblox NetMRI data sheet. Infoblox. [Online]. Available: https:
//www.infoblox.com/wp-content/uploads/infoblox-datasheet-netmri.pdf

[72] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan et al.,
“A general approach to network configuration analysis,” in NSDI ’15.
USA: USENIX Association, 2015, pp. 469–483.

[73] (2021) Cross-lingual transfer evaluation of multilingual encoders.
Google Research. [Online]. Available: https://sites.research.google/xtre
me

[74] M. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Unsupervised
translation of programming languages,” arXiv Preprint:2006.03511,
vol. 1, pp. 1–21, 2020.

[75] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan et al.,
“Language models are few-shot learners,” 2020.

[76] (2020) Natural language shell demo. OpenAI. [Online]. Available:
https://vimeo.com/427943407/98fe5258a7

[77] S. Shameem. (2020) Introducing Debuild. Debuild. [Online]. Available:
https://debuild.co

420

