
An Improved Dijkstra-based Algorithm for Resource Constrained Shortest Path

Pan Liu1*, Yihao Li2,, Shili Ai1, Cong Luo1, and Chengjian Yang1
1Faculty of Business Information, Shanghai Business School, Shanghai 201400, China
2School of Information and Electrical Engineering, Ludong University, Yantai, China

panl008@163.com, yihao.li@ldu.edu.cn, 2115258607@qq.com, 2680211421@qq.com, 530590767@qq.com

*corresponding author

Abstract—As a variation of the shortest path problem, the

resource constrained shortest path problem (RCSPP) has been

widely studied in academia and industry. Many related

algorithms and Lagrange relaxation technologies have been

proposed to solve the RCSPP. The paper presents a new

algorithm to solve the RCSPP by improving Dijkstra’s

algorithm. Firstly, we illustrate the process of solving the

RCSPP based on the idea of Dijkstra’s algorithm through a

simple example. Then, we design an algorithm to realize this

process. To improve the running efficiency of the proposed

algorithm, we give three empirical hypotheses as Lagrangian

relaxation techniques. Next, an improved algorithm is

presented to solve the RCSPP based on these three hypotheses.

Finally, an example is given to demonstrate the improved

algorithm. Compared with Dijkstra's algorithm for the

RCSPP, our proposed algorithm can reduce the number of

visits to nodes in the network.

Keywords-resource constrained shortest path; Dijkstra’s

algorithm; shortest path; relaxation techniques

I. INTRODUCTION

The resource constrained shortest path problem (RCSPP)
[1, 2] is derived from the shortest path problem. This
problem is to find a shortest path from the graph which needs
to satisfy certain constraints, such as travel time and travel
cost. Because the RCSPP is more suitable for complex real
conditions than shortest path problem, dealing with the
RCSPP has more practical value and application
signification. In practice, the application scenarios of the
RCSPP include the travelling salesman problem [3], the
route planning problem [4], the bus route problem [5], and
the vehicle routing problem [6-8]. Due to the constraints of
multiple resource constraints and basic path constraints, the
RCSPP is significantly more difficult to solve than the
shortest path problem with a single constraint. So, the
problem is also a strong NP hard problem [9].

When the map is small in size, we can enumerate all
feasible solutions to find a resource constrained shortest path
in the map. However, the method of exhaustion [10] is brutal
and the amount of computation can soar quickly as the size
of the data increases. Therefore, in most cases, this method is
not suitable for solving the RCSPP because it cannot quickly
find a suboptimal or feasible solution. In the past, several
approaches have been proposed to solve the RCSPP
problem. For example, Handler and Zang [11] relaxed the
capacity constraint by Lagrange relaxation, and obtained the
optimal solution by solving the dual problem of the original

problem. By using the cost reduction obtained from the
optimal Lagrange multiplier to run the path ranking
algorithm, Aneja et al. [12] presented a preprocessor for the
RCSPP, and then Beasley and Christofides [13] improved
the preprocessor for the RCSPP.

The paper analyzes the process of dealing with the
RCSPP based on Dijkstra’ algorithm. Then, to improve its
efficiency in real applications, three hypotheses as three
Lagrange relaxation techniques are proposed. Next,
combining Dijkstra-based algorithm for the RCSPP and
these three hypotheses, we design a new algorithm to solve
the RCSPP. Through a simple example, we illustrate the
process of our algorithm to deal with the RCSPP. Compared
with Dijkstra-based algorithm for the RCSPP, the efficiency
of our algorithm is improved by more than 32% in our
experiments.

The structure of this paper is as follows: In Section 2,
two hypotheses are proposed and the idea of resource
shortest path problem is presented based on Dijkstra’s
algorithm. A simple example illustrates the processing of
our proposed method. In Section 3, our algorithm
implements the algorithm proposed in Section 2. Section 4
analyzes the algorithm proposed in Section 3 and presents an
improved algorithm to deal with resource-constrained
shortest path problems based on a new assumption. Section 5
uses a simple example to demonstrate the processing of our
improved algorithm.

a

c
b

d

e

f

5/3

4/4
10/6

11/4
8/6

18/9

3/3

3/2
3/3

4/3

15/11
15/12

14/7

6/3
7/5

14/22

7/6

Fig. 1. A directed graph

368

2022 9th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/22/$31.00 ©2022 IEEE
DOI 10.1109/DSA56465.2022.00056

II. DIJKSTRA-BASED ALGORITHM

Dijkstra’s algorithm was designed by Dijkstra to solve
the shortest path problem with single constraint [14]. We can
obtain a shortest path satisfying a resource constraint by
adding a resource constraint to Dijkstra's algorithm. Fig. 1 is
a directed graph consisting of 6 nodes and 19 directed edges.
The numbers on these edges in Fig. 1 represent the path
length/number of resource consumption. Assuming node a is

an initial node. Now, we need to find a shortest path that
consumes resource is not greater than 12 from node a to
node f in Fig.1.

The method of Dijkstra’s algorithm is to traverse Fig. 1
starting from node a. If the resource consumption on a path
is greater than 12 during the traversal of Fig. 1, the path is
abandoned and the next path continues until a shortest path
satisfying resource consumption 12 from node a to node f is
found in Fig.1.

TABLE I. THE PROCESS OF FINDING SHORTEST PATH SATISFY RESOURCE CONSUMPTION 12 ACCORDING TO DIJKSTRA’S ALGORITHM.

S U dist[] path[]

a b c d e f a b c d e f

<a> {b,c,d,e,f} 0/0 11/4 18/9 4/4 -/- -/- - a a a - -

<a,d> {b,c,e,f} 0/0 11/4 18/9 4/4 19/15 -/- - a a a d -

<a,d,b> {c,e,f} 0/0 11/4 14/6 4/4 19/15 25/11 - a b a d b

<a,d,b,c> {e,f} 0/0 11/4 14/6 4/4 18/9 -/- - a b a c -

<a,d,b,c,e> {f} 0/0 11/4 14/6 4/4 18/9 24/12 - a b a c e

Table I shows the process of finding a resource constraint

shortest path from node a to node f in Fig.1 based on the
above method. In Table 1, S is a list of visited nodes, U is a
set of unvisited nodes, array dist[] records the distance and
resource consumption from node a to other nodes, array
path[] records the precursor node of a node on the shortest
path, and the symbol - indicates that it does not exist.

In the past, Dijkstra’ algorithm can obtain dist[]
according to the following formula.

       (), min 1, 1 , ,dist i k dist i k dist i j w j= − − +

(1)

In Eq. (1), the variable i denotes the ith, the variable k
denotes the kth element in U, and w[j] is a distance weight
on jth edge. For example, in Fig. 2, there are three nodes and
three edges. According to Eq. (1), dist[i] corresponding to
node c is min(9, 5+3)=8 in Fig. 2.

b

a
c

3
5

9

Fig. 2. An example for calculating dist[]

To solve the RCSPP, we change Eq. (1) to Eq. (2) as
follows.

 
     ()    

 

min 1, 1 , , , ,
,

1, 1 ,

rdist i k dist i j w j resource i j w j RC
dist i k

dist i k otherwise

 − − + + 
= 

− −

 (2)
where resource[i, j] denotes the resource consumption on the
path from the source to node j, wr[j] is a resource
consumption on jth edge, and RC is the resource constraint
on paths.

From Table I, we visit Fig.1 from node a. So, there are S
= <a>, U = {b, c, d, e, f}, dist[]={0/0, 11/4, 18/9, 4/4, -/-, -/-
}, and path[]={-, a, a, a, -, -}. According to Dijkstra’s
algorithm, we can find a minimum distance from dist[] that
is 4 in 4/4. Thus, node d in U is the next visited node and the
shortest path from node a to node d is 4 with resource
consumption 4. If we take node d as a starting node and then
repeat the above process, node b in U can be selected.
Similarly, we can repeat the above process until node f is
selected.

Now, let’s change resource consumption from 12 to 11
on the shortest path from node a to node j. Based on
Dijkstra’s algorithm and Eq. (2), we can construct Table II.
Although the distance on the shortest path from node a to
node j is 24 in Table I, the resource consumption is greater
than the given resource constraint 11. Thus, we retain the
path a-b-f with distance 25 and resource consumption 11 as a
resource constrained shortest path.

TABLE II. THE PROCESS OF FINDING SHORTEST PATH SATISFY RESOURCE CONSUMPTION 11 ACCORDING TO DIJKSTRA’S ALGORITHM.

S U dist[] path[]

a b c d e f a b c d e f

<a> {b,c,d,e,f} 0/0 11/4 18/9 4/4 -/- -/- - a a a - -

<a,d> {b,c,e,f} 0/0 11/4 18/9 4/4 19/15 -/- - a a a d -

<a,d,b> {c,e,f} 0/0 11/4 14/6 4/4 19/15 25/11 - a b a d b

<a,d,b,c> {e,f} 0/0 11/4 14/6 4/4 18/9 -/- - a b a c -

369

<a,d,b,c,e> {f} 0/0 11/4 14/6 4/4 18/9 25/11 - a b a c b

Combining Dijkstra’s algorithm and Eq. (2), we can
construct Algorithm 1 to solve the TCSPP as follows.

Algorithm 1:

Input: A map G=(V, E), where V is a set of nodes and E

is a set of edges, and resource constraint T;

Output: A shortest path from s0 to sn in G.

1 Initial a list S=<>, a set U=V, two arrays dist[]=-/- and

path[]=-;

2 S=<s0>, U=U-{s0},dist[0]=0/0,path[0]=s1;

3 while(U!={}) do

4 Get the last element si of S;

5 For each edges from si to other nodes in G;

6 Get the weight w on the edge from si to sk;

7 if(dist[k]==-/-) then

8 dist[k]=w;

9 path[k]=si;

10 else if(dist[k]!=-/-) then

11 Get distance d and resource consumption t from

dist[k] of sk;

12 Get distance d1 and resource consumption t1 from

dist[i] of si;

13 Get distance d2 and resource consumption t2 from

w;

14 if(d>d1+d2 && t1+t2<=T) then

15 dist[k]=(d1+d2)/(t1+t2);

16 path[k]=si;

17 endif

18 endif

19 endfor

20 Get a node sj with the minimum dist[j];

21 U=U-{sj};

22 Add sj to the end of S;

23 endwhile

24 return a shortest path from path[];

Similar to Dijkstra's algorithm, the time complexity of
Algorithm 1 is O(n2).

III. IMPROVED ALGORITHM

In Algorithm 1, we find that algorithm’s time
consumption is related to the while statement in line 3 and
the for statements in line 5. If we can reduce the number of
loops in the while and for statements, the time consumption
of Algorithm 1 will be reduced. Because we're solving for
the resource constrained shortest path between two nodes s0
and sn in a network, we can modify the while statement in
line 3 of Algorithm 1 to:

while(sn in U) do

Let p be sn in U and q be U!={}. Then, there is p → q.
Thus, our modification to line 3 of Algorithm 1 actually
replaces a looser judgement condition with a stricter
judgement condition, which will result in fewer loops of the
while statement in line 3 of Algorithm 1 in practice.

The function of the for statement in line 5 of Algorithm 1
is to access the edges of the graph. Therefore, if the number
of visits to the edges of the graph can be reduced, the number
of loops in line 5 of the for statement can be reduced. To
achieve this goal, we propose three empirical assumptions as
Lagrange relaxation techniques to solve TCSPP.

Assumption 1: In a network, all edges ending at node s0
must not be in any resource constrained shortest path from s0
to sn.

According to Assumption 1, we can delete three edges (b,
a), (c, a), and (d, a) in Fig. 1, and then get Figure 3 (a).

Assumption 2: In a network, all edges starting from sn
must not be in any resource constrained shortest path from s0
to sn.

According to Assumption 2, we can delete three edges (f,
b), (f, c), and (f, e) in Fig. 3 (a), and then get Fig. 3 (b).

Assumption 3: In a network, if the resource constrained
shortest path from s0 to si has been found by Algorithm 1,
then those edges ending at si and starting at nodes in U of
Algorithm 1 must not be in any resource constrained shortest
path from s0 to sn.

Assumption 3 is a generalization of Assumption 1. In the
process of solving the shortest path from node s0 to node sn,
algorithm 1 will visit many intermediate nodes. If these
intermediate nodes are regarded as initial nodes and sn is
regarded as terminal node, hypothesis 3 can be obtained
according to assumption 1.

By Assumption 3，we can reduce some edges during the

execution of algorithm 1. For example, let's consider the
construction process for obtaining the shortest path that
satisfies resource 12 in Table 1. When we select node d from
U, the resource constrained shortest path from node a to
node d has been obtained. Thus, the edge from node e to
node d can be deleted from Fig. 3 (b) according to
Assumption 3, and then Fig. 3 (c) is obtained. Then, after we
select node b from U, the resource constrained shortest path
from node a to node b has been obtained. Thus, the edge
from node c to node b can be deleted from Fig. 3 (c)
according to Assumption 3, and then Figure 3 (d) is
obtained. Similarly, we can delete the edge from node e to
node c when we select node c from U, and then Fig. 3 (e) is
obtained. We select node e from U and then obtain Figure 3
(f). When we select node f from U, Figure 3 (g) is obtained.
Finally, we can obtain a resource constrained shortest path in
Figure 3 (h).

370

a

c
b

d

e

f

4/4

11/4
8/6

18/9

3/3

3/2
3/3

4/3

15/11
15/12

14/7

6/3
7/5

14/22

7/6

(a)

a

c
b

d

e

f

4/4

11/4
8/6

18/9

3/3

3/2
3/3

4/3

15/11
15/12

14/7

6/3

(b)

c
b

d

e

f

4/4

11/4
8/6

18/9

3/3

3/2
3/3

4/3

15/11

14/7

6/3

(c)

c
b

d

e

f

4/4

11/4
8/6

18/9

3/2
3/3

4/3

15/11

14/7

6/3

(d)

c
b

d

e

f

4/4

11/4
8/6

18/9

3/2
4/3

15/11

14/7

6/3

(e)

c
b

d

e

f

4/4

11/4
8/6

18/9

3/2
4/3

15/11

14/7

6/3

(f)

c
b

d

e

f

4/4

11/4
8/6

18/9

3/2
4/3

15/11

14/7

6/3

(g)

c
b

e

f

11/4

3/2
4/3

6/3

(h)

a a

a aaa

Fig. 3. The execution of three assumptions to Figure 1 according to Table I

Now, we need to design pseudocodes to realize

assumptions 1, 2, and 3. For Assumption 1, we design the
following statement.

Delete those edges in G by assumption 1;
For Assumption 2, we have designed the following

statement.
while(sn in U) do

For Assumption 3, we can insert a new statement
between lines 23 and 24 of algorithm 1 as follows:

Delete those edges from nodes in U to sj;
Therefore, Algorithm 1 can be improved to Algorithm 2

as follows.

Algorithm 2:

Input: A map G=(V, E), where V is a set of nodes and E

is a set of edges, and resource constraint T;

Output: A shortest path from s0 to sn in G.

1 Initial a list S=<>, a set U=V, two arrays dist[]=-/- and

path[]=-;

2 S=<s0>, U=U-{s0},dist[0]=0/0,path[0]=s1;

3 Delete those edges in G by assumption 1; //For

assumption 1.

4 while(sn in U) do //For assumption 2.

5 Get the last element si of S;

6 For each edges from si to other nodes in G;

7 Get the weight w on the edge from si to sk;

8 if(dist[k]==-/-) then

9 dist[k]=w;

10 path[k]=si;

11 else if(dist[k]!=-/-) then

12 Get distance d and resource consumption t from

dist[k] of sk;

13 Get distance d1 and resource consumption t1 from

dist[i] of si;

14 Get distance d2 and resource consumption t2 from

w;

15 if(d>d1+d2 && t1+t2<=T) then

16 dist[k]=(d1+d2)/(t1+t2);

17 path[k]=si;

18 endif

19 endif

20 endfor

21 Get a node sj with the minimum dist[j];

22 U=U-{sj};

23 Add sj to the end of S;

24 Delete those edges from nodes in U to sj; //For

assumption 3.

25 endwhile

26 return a shortest path from path[];

Although the worst time complexity of algorithm 2 is still
O(n2), it can greatly reduce the number of edge accesses in
practical applications. In the network, if the distance between
the initial node s0 and the terminal node sn is k, and each
node on the shortest path has an average of i edges out and j
edges in, the time complexity of algorithm 2 is O(k * i).

IV. EXPERIMENT

The purpose of our experiment is to compare the number
of the maximum number of cycles of Algorithm 1 and
Algorithm 2. The experiment is carried out on a traffic map
of Chongming Island in China. The traffic map has 78 nodes
and 264 roads. For experimental comparison, we number all
nodes on the traffic map from 0 to 77. We then randomly
pick 10 pairs of nodes as the sources and destinations from
the map, and randomly get resource constraints between 100

371

and 350. Then, we call Algorithm 1 and Algorithm 2
respectively to compare their maximum cycles, and the

experimental result is shown in Table 3.

TABLE III. COMPARISON OF ALGORITHM 1 AND ALGORITHM 2 FOR THE MAXIMUM CYCLES.

Experiment Maximum cycles (times)

source destination resource Algorithm 1 Algorithm 2

28 64 304 3003 2832

14 10 129 3003 77

67 71 272 3003 2967

27 13 267 3003 858

66 62 263 3003 302

11 40 311 3003 2142

46 43 181 3003 77

47 32 308 3003 1518

12 52 259 3003 2568

50 40 273 3003 588

From Table 3, the maximum cycles of Algorithm 2 are

smaller than those of Algorithm 1 under the same sources,
destinations, and resource constraints. Therefore, the
efficiency of Algorithm 2 is higher than that of Algorithm 1
in practical application. In addition, the value of Algorithm 1
is stable, while that of Algorithm 2 is not stable. Moreover,
the value of Algorithm 2 is sometimes much less than that of
Algorithm 1, which indicates that in some cases, the
efficiency of Algorithm 2 is much better than that of
Algorithm 1.

To quantitatively compare the efficiency of the two
algorithms, we randomly select 10,000 times of source,
destination, and resource constraint. Then we count the
average cycles of Algorithm 1 and Algorithm 2 in this
experiment. The experimental result is shown in Fig. 4. From
Fig. 4, the average number of cycles for Algorithm 1 is 3003,
while that for Algorithm 2 is 2020. Therefore, the efficiency
of Algorithm 2 is 32.7% higher than that of Algorithm 1 in
the experiment.

Fig. 4. Experimental results of algorithm 1 and 2 after 10,000 times random

selection of sources, destinations, and resource constraints

Note that because Algorithm 1 is to solve the resource

constrained shortest path from one node to all nodes, while
Algorithm 2 is to solve the resource-constrained shortest path
between two nodes. To realize the function of Algorithm 1,

we simply need to change the sentence in Line 4 of
Algorithm 2 back to “while(U!={}) do” in Line 4 of
algorithm 1.

V. CONCLUSION

The TCSPP is a common problem in the field of
transportation. To solve this problem, many related
algorithms and Lagrange relaxation techniques have been
proposed in the past. This paper first designs an algorithm
for solving the TCSPP based on Dijkstra’s algorithm. Then,
we analyze the number of cycles of the algorithm and point
out the possibility of reducing the number of cycles. Next,
we propose three empirical assumptions as Lagrange
relaxation techniques. Based on these three assumptions, we
improve the algorithm based on Dijkstra’s algorithm. Then,
we use a simple example to demonstrate the execution of the
improved algorithm. In the experiment, we compare the
number of cycles of this improved algorithm with Dijkstra-
based algorithm. Experimental result shows that our
improved algorithm can reduce the number of cycles by
more than 32% compared with Dijkstra’s algorithm.
Therefore, our algorithm has potential application value.

REFERENCES

[1] N. Tanoumand and T. Ünlüyurt, " An Exact Algorithm for the
Resource Constrained Home Health Care Vehicle Routing Problem,"
Annals of Operations Research, vol. 304, no. 1, pp. 397-425, 2021.

[2] M. Ruß, G. Gust, and D. Neumann, "The Constrained Reliable
Shortest Path Problem in Stochastic Time-Dependent Networks,"
Operations Research, vol. 69, no. 3, pp. 709-726, 2021.

[3] K. Panwar and K. Deep, " Discrete Grey Wolf Optimizer for
Symmetric Travelling Salesman Problem," Applied Soft Computing,
vol. 105, p. 107298, 2021.

[4] X. Wang, L. Wang, S. Wang, J.-f. Chen, and C. Wu, " An Xgboost-
enhanced Fast Constructive Algorithm for Food Delivery Route
Planning Problem," Computers & Industrial Engineering, vol. 152, p.
107029, 2021.

[5] X. Chen, Y. Wang, Y. Wang, X. Qu, and X. Ma, " Customized Bus
Route Design with Pickup and Delivery and Time Windows: Model,
Case Study and Comparative Analysis," Expert Systems with
Applications, vol. 168, p. 114242, 2021.

372

[6] A. Agárdi, L .Kovács, and T. Bányai, "Using Time Series and
Classification in Vehicle Routing Problem," International Journal of
Performability Engineering, vol. 17, no. 1, pp. 14-25, January 2021.

[7] I. Kucukoglu, R. Dewil, and D. Cattrysse, " The Electric Vehicle
Routing Problem and Its Variations: a Literature Review," Computers
& Industrial Engineering, vol. 161, p. 107650, 2021.

[8] A. Agárdi, L .Kovács, and T. Bányai, " Neutrality of Vehicle Routing
Problem," International Journal of Performability Engineering, vol.
17, no. 10, pp. 848-857, October 2021.

[9] P. Festa, " Constrained Shortest Path Problems: State-of-the-art and
Recent Advances," in 2015 17th International Conference on
Transparent Optical Networks (ICTON), 2015: IEEE, pp. 1-17.

[10] A. Minkin, O. Nikolaeva, and A. Russkov, " Hyperspectral Data
Compression Based Up-on the Principal Component Analysis,"
Computer Optics, vol. 45, no. 2, pp. 235-244, 2021.

[11] G. Y. Handler and I. Zang, " A Dual Algorithm for the Constrained
Shortest Path Problem," Networks, vol. 10, no. 4, pp. 293-309, 1980.

[12] Y. P. Aneja, V. Aggarwal, and K. P. Nair, " Shortest Chain Subject to
Side Constraints," Networks, vol. 13, no. 2, pp. 295-302, 1983.
[Online]. Available: https://doi.org/10.1002/net.3230130212.

[13] J. E. Beasley and N. Christofides, " An Algorithm for the Resource
Constrained Shortest Path Problem," Networks, vol. 19, no. 4, pp.
379-394, 1989. [Online]. Available:
https://doi.org/10.1002/net.3230190402.

[14] M. Barbehenn, " A Note on the Complexity of Dijkstra's Algorithm
for Graphs with Weighted Vertices," IEEE transactions on
computers, vol. 47, no. 2, p. 263, 1998. [Online]. Available:
https://doi.org/10.1109/12.663776.

373

https://doi.org/10.1002/net.3230130212
https://doi.org/10.1002/net.3230190402
https://doi.org/10.1109/12.663776

