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Abstract—As a variation of the shortest path problem, the 

resource constrained shortest path problem (RCSPP) has been 

widely studied in academia and industry. Many related 

algorithms and Lagrange relaxation technologies have been 

proposed to solve the RCSPP. The paper presents a new 

algorithm to solve the RCSPP by improving Dijkstra’s 

algorithm. Firstly, we illustrate the process of solving the 

RCSPP based on the idea of Dijkstra’s algorithm through a 

simple example. Then, we design an algorithm to realize this 

process. To improve the running efficiency of the proposed 

algorithm, we give three empirical hypotheses as Lagrangian 

relaxation techniques. Next, an improved algorithm is 

presented to solve the RCSPP based on these three hypotheses. 

Finally, an example is given to demonstrate the improved 

algorithm. Compared with Dijkstra's algorithm for the 

RCSPP, our proposed algorithm can reduce the number of 

visits to nodes in the network. 

Keywords-resource constrained shortest path; Dijkstra’s 

algorithm; shortest path; relaxation techniques 

I.  INTRODUCTION 

The resource constrained shortest path problem (RCSPP) 
[1, 2] is derived from the shortest path problem. This 
problem is to find a shortest path from the graph which needs 
to satisfy certain constraints, such as travel time and travel 
cost. Because the RCSPP is more suitable for complex real 
conditions than shortest path problem, dealing with the 
RCSPP has more practical value and application 
signification. In practice, the application scenarios of the 
RCSPP include the travelling salesman problem [3], the 
route planning problem [4], the bus route problem [5], and 
the vehicle routing problem [6-8]. Due to the constraints of 
multiple resource constraints and basic path constraints, the 
RCSPP is significantly more difficult to solve than the 
shortest path problem with a single constraint. So, the 
problem is also a strong NP hard problem [9]. 

When the map is small in size, we can enumerate all 
feasible solutions to find a resource constrained shortest path 
in the map. However, the method of exhaustion [10] is brutal 
and the amount of computation can soar quickly as the size 
of the data increases. Therefore, in most cases, this method is 
not suitable for solving the RCSPP because it cannot quickly 
find a suboptimal or feasible solution. In the past, several 
approaches have been proposed to solve the RCSPP 
problem. For example, Handler and Zang [11] relaxed the 
capacity constraint by Lagrange relaxation, and obtained the 
optimal solution by solving the dual problem of the original 

problem. By using the cost reduction obtained from the 
optimal Lagrange multiplier to run the path ranking 
algorithm, Aneja et al. [12] presented a preprocessor for the 
RCSPP, and then Beasley and Christofides [13] improved 
the preprocessor for the RCSPP. 

The paper analyzes the process of dealing with the 
RCSPP based on Dijkstra’ algorithm. Then, to improve its 
efficiency in real applications, three hypotheses as three 
Lagrange relaxation techniques are proposed. Next, 
combining Dijkstra-based algorithm for the RCSPP and 
these three hypotheses, we design a new algorithm to solve 
the RCSPP. Through a simple example, we illustrate the 
process of our algorithm to deal with the RCSPP. Compared 
with Dijkstra-based algorithm for the RCSPP, the efficiency 
of our algorithm is improved by more than 32% in our 
experiments. 

The structure of this paper is as follows: In Section 2, 
two hypotheses are proposed and the idea of resource 
shortest path problem is presented based on Dijkstra’s 
algorithm.  A simple example illustrates the processing of 
our proposed method. In Section 3, our algorithm 
implements the algorithm proposed in Section 2. Section 4 
analyzes the algorithm proposed in Section 3 and presents an 
improved algorithm to deal with resource-constrained 
shortest path problems based on a new assumption. Section 5 
uses a simple example to demonstrate the processing of our 
improved algorithm. 
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Fig. 1. A directed graph 
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II. DIJKSTRA-BASED ALGORITHM 

Dijkstra’s algorithm was designed by Dijkstra to solve 
the shortest path problem with single constraint [14]. We can 
obtain a shortest path satisfying a resource constraint by 
adding a resource constraint to Dijkstra's algorithm. Fig. 1 is 
a directed graph consisting of 6 nodes and 19 directed edges. 
The numbers on these edges in Fig. 1 represent the path 
length/number of resource consumption. Assuming node a is 

an initial node. Now, we need to find a shortest path that 
consumes resource is not greater than 12 from node a to 
node f in Fig.1. 

The method of Dijkstra’s algorithm is to traverse Fig. 1 
starting from node a. If the resource consumption on a path 
is greater than 12 during the traversal of Fig. 1, the path is 
abandoned and the next path continues until a shortest path 
satisfying resource consumption 12 from node a to node f is 
found in Fig.1. 

TABLE I.  THE PROCESS OF FINDING SHORTEST PATH SATISFY RESOURCE CONSUMPTION 12 ACCORDING TO DIJKSTRA’S ALGORITHM. 

S U dist[] path[] 

a b c d e f a b c d e f 

<a> {b,c,d,e,f} 0/0 11/4 18/9 4/4 -/- -/- - a a a - - 

<a,d> {b,c,e,f} 0/0 11/4 18/9 4/4 19/15 -/- - a a a d - 

<a,d,b> {c,e,f} 0/0 11/4 14/6 4/4 19/15 25/11 - a b a d b 

<a,d,b,c> {e,f} 0/0 11/4 14/6 4/4 18/9 -/- - a b a c - 

<a,d,b,c,e> {f} 0/0 11/4 14/6 4/4 18/9 24/12 - a b a c e 

 
Table I shows the process of finding a resource constraint 

shortest path from node a to node f in Fig.1 based on the 
above method. In Table 1, S is a list of visited nodes, U is a 
set of unvisited nodes, array dist[] records the distance and 
resource consumption from node a to other nodes, array 
path[] records the precursor node of a node on the shortest 
path, and the symbol - indicates that it does not exist. 

In the past, Dijkstra’ algorithm can obtain dist[] 
according to the following formula. 

       ( ), min 1, 1 , ,dist i k dist i k dist i j w j= − − +         

(1) 

In Eq. (1), the variable i denotes the ith, the variable k 
denotes the kth element in U, and w[j] is a distance weight 
on jth edge. For example, in Fig. 2, there are three nodes and 
three edges. According to Eq. (1), dist[i] corresponding to 
node c is min(9, 5+3)=8 in Fig. 2. 
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Fig. 2. An example for calculating dist[] 

To solve the RCSPP, we change Eq. (1) to Eq. (2) as 
follows. 

 
     ( )    

 

min 1, 1 , , , ,
,

1, 1 ,

rdist i k dist i j w j resource i j w j RC
dist i k

dist i k otherwise

 − − + + 
= 

− −

  (2) 
where resource[i, j] denotes the resource consumption on the 
path from the source to node j, wr[j] is a resource 
consumption on jth edge, and RC is the resource constraint 
on paths. 

From Table I, we visit Fig.1 from node a. So, there are S 
= <a>, U = {b, c, d, e, f}, dist[]={0/0, 11/4, 18/9, 4/4, -/-, -/-
}, and path[]={-, a, a, a, -, -}. According to Dijkstra’s 
algorithm, we can find a minimum distance from dist[] that 
is 4 in 4/4. Thus, node d in U is the next visited node and the 
shortest path from node a to node d is 4 with resource 
consumption 4. If we take node d as a starting node and then 
repeat the above process, node b in U can be selected. 
Similarly, we can repeat the above process until node f is 
selected. 

Now, let’s change resource consumption from 12 to 11 
on the shortest path from node a to node j. Based on 
Dijkstra’s algorithm and Eq. (2), we can construct Table II. 
Although the distance on the shortest path from node a to 
node j is 24 in Table I, the resource consumption is greater 
than the given resource constraint 11. Thus, we retain the 
path a-b-f with distance 25 and resource consumption 11 as a 
resource constrained shortest path. 

TABLE II.  THE PROCESS OF FINDING SHORTEST PATH SATISFY RESOURCE CONSUMPTION 11 ACCORDING TO DIJKSTRA’S ALGORITHM. 

S U dist[] path[] 

a b c d e f a b c d e f 

<a> {b,c,d,e,f} 0/0 11/4 18/9 4/4 -/- -/- - a a a - - 

<a,d> {b,c,e,f} 0/0 11/4 18/9 4/4 19/15 -/- - a a a d - 

<a,d,b> {c,e,f} 0/0 11/4 14/6 4/4 19/15 25/11 - a b a d b 

<a,d,b,c> {e,f} 0/0 11/4 14/6 4/4 18/9 -/- - a b a c - 
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<a,d,b,c,e> {f} 0/0 11/4 14/6 4/4 18/9 25/11 - a b a c b 

Combining Dijkstra’s algorithm and Eq. (2), we can 
construct Algorithm 1 to solve the TCSPP as follows. 

Algorithm 1: 

Input: A map G=(V, E), where V is a set of nodes and E 

is a set of edges, and resource constraint T; 

Output: A shortest path from s0 to sn in G. 

1  Initial a list S=<>, a set U=V, two arrays dist[]=-/- and 

path[]=-; 

2  S=<s0>, U=U-{s0},dist[0]=0/0,path[0]=s1; 

3  while(U!={}) do 

4    Get the last element si of S; 

5    For each edges from si to other nodes in G; 

6      Get the weight w on the edge from si to sk; 

7      if(dist[k]==-/-) then 

8        dist[k]=w; 

9        path[k]=si; 

10     else if(dist[k]!=-/-) then 

11       Get distance d and resource consumption t from 

dist[k] of sk; 

12       Get distance d1 and resource consumption t1 from 

dist[i] of si; 

13       Get distance d2 and resource consumption t2 from 

w; 

14       if(d>d1+d2 && t1+t2<=T) then 

15         dist[k]=(d1+d2)/(t1+t2); 

16         path[k]=si; 

17       endif 

18     endif 

19   endfor 

20   Get a node sj with the minimum dist[j]; 

21   U=U-{sj}; 

22   Add sj to the end of S; 

23 endwhile 

24 return a shortest path from path[]; 
 

Similar to Dijkstra's algorithm, the time complexity of 
Algorithm 1 is O(n2). 

III. IMPROVED ALGORITHM 

In Algorithm 1, we find that algorithm’s time 
consumption is related to the while statement in line 3 and 
the for statements in line 5. If we can reduce the number of 
loops in the while and for statements, the time consumption 
of Algorithm 1 will be reduced. Because we're solving for 
the resource constrained shortest path between two nodes s0 
and sn in a network, we can modify the while statement in 
line 3 of Algorithm 1 to: 

while(sn in U) do 

Let p be sn in U and q be U!={}. Then, there is p → q. 
Thus, our modification to line 3 of Algorithm 1 actually 
replaces a looser judgement condition with a stricter 
judgement condition, which will result in fewer loops of the 
while statement in line 3 of Algorithm 1 in practice. 

The function of the for statement in line 5 of Algorithm 1 
is to access the edges of the graph. Therefore, if the number 
of visits to the edges of the graph can be reduced, the number 
of loops in line 5 of the for statement can be reduced. To 
achieve this goal, we propose three empirical assumptions as 
Lagrange relaxation techniques to solve TCSPP. 

Assumption 1: In a network, all edges ending at node s0 
must not be in any resource constrained shortest path from s0 
to sn. 

According to Assumption 1, we can delete three edges (b, 
a), (c, a), and (d, a) in Fig. 1, and then get Figure 3 (a). 

Assumption 2: In a network, all edges starting from sn 
must not be in any resource constrained shortest path from s0 
to sn. 

According to Assumption 2, we can delete three edges (f, 
b), (f, c), and (f, e) in Fig. 3 (a), and then get Fig. 3 (b). 

Assumption 3: In a network, if the resource constrained 
shortest path from s0 to si has been found by Algorithm 1, 
then those edges ending at si and starting at nodes in U of 
Algorithm 1 must not be in any resource constrained shortest 
path from s0 to sn. 

Assumption 3 is a generalization of Assumption 1. In the 
process of solving the shortest path from node s0 to node sn, 
algorithm 1 will visit many intermediate nodes. If these 
intermediate nodes are regarded as initial nodes and sn is 
regarded as terminal node, hypothesis 3 can be obtained 
according to assumption 1. 

By Assumption 3，we can reduce some edges during the 

execution of algorithm 1. For example, let's consider the 
construction process for obtaining the shortest path that 
satisfies resource 12 in Table 1. When we select node d from 
U, the resource constrained shortest path from node a to 
node d has been obtained. Thus, the edge from node e to 
node d can be deleted from Fig. 3 (b) according to 
Assumption 3, and then Fig. 3 (c) is obtained. Then, after we 
select node b from U, the resource constrained shortest path 
from node a to node b has been obtained. Thus, the edge 
from node c to node b can be deleted from Fig. 3 (c) 
according to Assumption 3, and then Figure 3 (d) is 
obtained. Similarly, we can delete the edge from node e to 
node c when we select node c from U, and then Fig. 3 (e) is 
obtained. We select node e from U and then obtain Figure 3 
(f). When we select node f from U, Figure 3 (g) is obtained. 
Finally, we can obtain a resource constrained shortest path in 
Figure 3 (h). 
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Fig. 3. The execution of three assumptions to Figure 1 according to Table I 

 
Now, we need to design pseudocodes to realize 

assumptions 1, 2, and 3. For Assumption 1, we design the 
following statement. 

Delete those edges in G by assumption 1; 
For Assumption 2, we have designed the following 

statement. 
while(sn in U) do 

For Assumption 3, we can insert a new statement 
between lines 23 and 24 of algorithm 1 as follows: 

Delete those edges from nodes in U to sj; 
Therefore, Algorithm 1 can be improved to Algorithm 2 

as follows. 

Algorithm 2: 

Input: A map G=(V, E), where V is a set of nodes and E 

is a set of edges, and resource constraint T; 

Output: A shortest path from s0 to sn in G. 

1  Initial a list S=<>, a set U=V, two arrays dist[]=-/- and 

path[]=-; 

2  S=<s0>, U=U-{s0},dist[0]=0/0,path[0]=s1; 

3  Delete those edges in G by assumption 1; //For 

assumption 1. 

4  while(sn in U) do //For assumption 2. 

5    Get the last element si of S; 

6    For each edges from si to other nodes in G; 

7      Get the weight w on the edge from si to sk; 

8      if(dist[k]==-/-) then 

9        dist[k]=w; 

10       path[k]=si; 

11     else if(dist[k]!=-/-) then 

12       Get distance d and resource consumption t from 

dist[k] of sk; 

13       Get distance d1 and resource consumption t1 from 

dist[i] of si; 

14       Get distance d2 and resource consumption t2 from 

w; 

15       if(d>d1+d2 && t1+t2<=T) then 

16         dist[k]=(d1+d2)/(t1+t2); 

17         path[k]=si; 

18       endif 

19     endif 

20   endfor 

21   Get a node sj with the minimum dist[j]; 

22   U=U-{sj}; 

23   Add sj to the end of S; 

24   Delete those edges from nodes in U to sj; //For 

assumption 3. 

25 endwhile 

26 return a shortest path from path[]; 
 

Although the worst time complexity of algorithm 2 is still 
O(n2), it can greatly reduce the number of edge accesses in 
practical applications. In the network, if the distance between 
the initial node s0 and the terminal node sn is k, and each 
node on the shortest path has an average of i edges out and j 
edges in, the time complexity of algorithm 2 is O(k * i). 

IV. EXPERIMENT 

The purpose of our experiment is to compare the number 
of the maximum number of cycles of Algorithm 1 and 
Algorithm 2. The experiment is carried out on a traffic map 
of Chongming Island in China. The traffic map has 78 nodes 
and 264 roads. For experimental comparison, we number all 
nodes on the traffic map from 0 to 77. We then randomly 
pick 10 pairs of nodes as the sources and destinations from 
the map, and randomly get resource constraints between 100 
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and 350. Then, we call Algorithm 1 and Algorithm 2 
respectively to compare their maximum cycles, and the 

experimental result is shown in Table 3. 

TABLE III.  COMPARISON OF ALGORITHM 1 AND ALGORITHM 2 FOR THE MAXIMUM CYCLES. 

Experiment Maximum cycles (times) 

source destination resource Algorithm 1 Algorithm 2 

28 64 304 3003 2832 

14 10 129 3003 77 

67 71 272 3003 2967 

27 13 267 3003 858 

66 62 263 3003 302 

11 40 311 3003 2142 

46 43 181 3003 77 

47 32 308 3003 1518 

12 52 259 3003 2568 

50 40 273 3003 588 

 
From Table 3, the maximum cycles of Algorithm 2 are 

smaller than those of Algorithm 1 under the same sources, 
destinations, and resource constraints. Therefore, the 
efficiency of Algorithm 2 is higher than that of Algorithm 1 
in practical application. In addition, the value of Algorithm 1 
is stable, while that of Algorithm 2 is not stable. Moreover, 
the value of Algorithm 2 is sometimes much less than that of 
Algorithm 1, which indicates that in some cases, the 
efficiency of Algorithm 2 is much better than that of 
Algorithm 1. 

To quantitatively compare the efficiency of the two 
algorithms, we randomly select 10,000 times of source, 
destination, and resource constraint. Then we count the 
average cycles of Algorithm 1 and Algorithm 2 in this 
experiment. The experimental result is shown in Fig. 4. From 
Fig. 4, the average number of cycles for Algorithm 1 is 3003, 
while that for Algorithm 2 is 2020. Therefore, the efficiency 
of Algorithm 2 is 32.7% higher than that of Algorithm 1 in 
the experiment. 

 

 
Fig. 4. Experimental results of algorithm 1 and 2 after 10,000 times random 

selection of sources, destinations, and resource constraints 
 
Note that because Algorithm 1 is to solve the resource 

constrained shortest path from one node to all nodes, while 
Algorithm 2 is to solve the resource-constrained shortest path 
between two nodes. To realize the function of Algorithm 1, 

we simply need to change the sentence in Line 4 of 
Algorithm 2 back to “while(U!={}) do” in Line 4 of 
algorithm 1. 

V. CONCLUSION 

The TCSPP is a common problem in the field of 
transportation. To solve this problem, many related 
algorithms and Lagrange relaxation techniques have been 
proposed in the past. This paper first designs an algorithm 
for solving the TCSPP based on Dijkstra’s algorithm. Then, 
we analyze the number of cycles of the algorithm and point 
out the possibility of reducing the number of cycles.  Next, 
we propose three empirical assumptions as Lagrange 
relaxation techniques. Based on these three assumptions, we 
improve the algorithm based on Dijkstra’s algorithm. Then, 
we use a simple example to demonstrate the execution of the 
improved algorithm. In the experiment, we compare the 
number of cycles of this improved algorithm with Dijkstra-
based algorithm. Experimental result shows that our 
improved algorithm can reduce the number of cycles by 
more than 32% compared with Dijkstra’s algorithm. 
Therefore, our algorithm has potential application value. 
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