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Abstract - Metamorphic testing is one of the effective
methods to alleviate the test oracle problem. Metamorphic
relation is the core of metamorphic testing, and there is no
effective automatic identification technology. This paper
transforms the metamorphic relation recognition issue into a
symbolic expression regression problem. The test input pairs
are generated using the preset input pattern, and the output
pattern is mined by gene expression programming. After
reduction and verification, a valid metamorphic relation is
obtained. Experiments show that this method can identify the
relation obtained by static analysis and a more significant
number. At the same time, compared with existing technologies,
it has apparent advantages in effectiveness, reliability, and
performance.

Keywords - test oracle; metamorphic relation identification;
symbolic regression; gene expression programming.

I. INTRODUCTION
Software testing refers to selecting a set of test cases

from the input domain of the software to be tested, using
these test cases to execute the software, and comparing the
actual output results with the expected output results. If not,
it indicates a fault in the software to be tested.

We call the test oracle problem in test theory a
phenomenon in which the execution result of a program
cannot be predicted. For example, when testing the sin(x)
function, we cannot accurately construct the expected results
of sin(x), which makes the traditional test method with direct
comparison ineffective.

Metamorphic Testing (MT) is one of the effective
methods to alleviate the test oracle problems. MT uses
Metamorphic Relation (MR) as the decision mechanism, and
MR is the invariant relation between input and output.
Metamorphic relation is the relation expected to follow
between input and output when the target program is
executed many times[1].

MR is the core of MT. The current MR identification
technology can be divided into static analysis and dynamic
mining according to whether the tested program is executed.
The former usually obtain MR from mathematical and
physical model properties, computational method

characteristics, and program code specifications. The latter
mining likely MR from a program running data because it
does not require testers to have domain knowledge, so it has
high engineering practice value.
There are three branches of the dynamic method at present:
1) Intelligent search method transforms MR identification

into a numerical regression problem, such as MRI[2]
and AutoMR[3]. They fix MR expression and solve
coefficients.

2) Machine learning method transforms MR
identification into a classification problem, such as
ML[4]. It trains a machine learning model with a
program flow chart and predicts the MR of the
program under test.

3) From the perspective of symbolic expression
regression, MR is mined on execution data and has no
limitation on the format[5].

This paper establishes a general MR identification
technology for scientific calculation programs. Major
contributions include :
1) Propose an MR identification technology that can fully

use prior knowledge, support rich symbolic
expressions, and effectively identify the results.

2) The recognition process is stable. As long as MR exists,
it must be found at most three times.

3) MR has high support on the test set and high
recognition quality.

Note that, at present, it can only be used for scientific
computing programs, and the identified MRs have been
restricted to the format of input-only relation plus output-
only relation.
The structure of this paper is as follows: In the second

section, we introduce the background and motivation of MR
recognition. In the third section, we present our method. In
the fourth section, we design the experiment and submit the
results in the fifth section. In the sixth section, we discuss
the experimental effects. In the seventh section, we
summarize and conclude this paper.
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II. BACKGROUND AND MOTIVATION

Dynamic MR identification technology has its
limitations and shortcomings:

Intelligent search method: MR is limited to polynomial,
MR expression is limited, and input pattern r and output
pattern R are coupled to solve, which has a large amount of
calculation. At the same time, the domain knowledge of the
program under test is not considered. Many candidate
solutions are meaningless to the test in the search space,
further reducing efficiency.

Classification prediction method: based on the existing
MR to predict, it is impossible to find new forms, it is
difficult to find enough programs to form a training set in
engineering, and the source code is also difficult to obtain.

Symbolic regression method: It is a data-driven
approach—MR identification into a symbolic expression
regression problem. Although MR form has no restrictions,
the main challenge is constant numeric generation.

Gene Expression Programming (GEP) is a kind of swarm
intelligence evolutionary algorithm proposed by C. Ferreira
in 2001[6]. GEP is a popular and established evolutionary
algorithm for automatically generating computer programs
and mathematical models. It has found wide applications in
symbolic regression, classification, automatic model design,
combinatorial optimization, and real parameter optimization
problems.

Studies have shown that GEP coding is simple, closed to
genetic operations, and has fast evolution speed. In
particular, the success rate of GEP is more significant than
0.66. As long as the expression exists, it can be found by
executing GEP no more than three times[7]. GEP has
achieved better results than traditional algorithms in
symbolic regression, predicate association rule extraction,
classification discriminant mining, time series prediction,
and cellular automata evolution.

This paper assumes that MR can be expressed as a
symbolic equation. Then the MR solution problem is
transformed into an extended-expression regression problem.
GEP technology is used to solve the symbolic regression.

III. PROPOSED APPROACH

MR is composed of input relation r and output relation
R. In this paper, firstly, r is selected to generate test input,
and then R is mined. The processing flow is shown in
Figure 1. It divides into three sections. Specifically, MR is
mined in Section III-A, the redundancy MRs are eliminated
in Section III-B, and the final results are verified in Section
III-C.

Fig. 1. The overall MR identification workflow.

The program under test is denoted as P, the input I, output
O, O = P (I). Without losing generality, binary MR, namely,
the invariant relation between the two executions, indicates
the execution process of this method.

A. MR mining
Unlike the existing MR identification technology to

solve r-R together, this method first presets the input
relation r, then mines R.
1) Source input �1 : Randomly generated initial inputs on

the input domain, each with n elements:
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2) Input relation �： Taking elementary function as �;
3) Follow-up input �2 : Select the r series to generate

subsequent input �2:
�2 = �(�1)

4) Get output: the output �1 , �2 are obtained after the
program under test have been executed with these
inputs:

�1 = �(�1)
�2 = �(�2)

5) Mining R: Mining R on the output makes the fitting
result �2

' of R (�1) closest to �2:
�2

' = �(�1); �2
'≈ �2

B. Elimination of redundancy
Because of the dynamical mining mean, there is

redundancy MR, such as MRi : 2sin(x) = 2sin(2 * � + x),
and this expression is simplified to sin(x) = sin(2 * � + x).

C. Verification of MR
Since the likely MR is obtained from the training data set,

it still needs to be verified on the test data set. We used data-
based probabilistic verification.
Construct a test set T, repeat the above process f times,

and calculate the calculation degree of support s, if the score
exceeds the support threshold h, the result is good, and MR
is accepted.
1) Testing set T: Each pair of input and output

constitutes a test record; m records form a set.
2) Calculation degree of support s: if MRi is

established on the test record�� , Count(true) plus 1,
otherwise take the next record ��+1 until T is empty,
s = Count(true) / Count(T).

3) Number of verifications f: Perform verifying process
f times by using different test sets T.

4) Support threshold h: If the Calculation degree of
support s exceeds the threshold h, the verified result
is successful. Otherwise, it fails.

D. Example
Based on the above algorithm, sin is an example to show

the recognition process.
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Assuming that we have implemented a program P, which
evaluates the sin value ( output ) of the given input,
identifies the relation r = ( �1 , 2 * � + �1 ) according to the
prior knowledge.
And set the �1 range of the primary input value to [ 0, 2 *

� ], and then generate the follow-up input �2= ( 2 * � +�1 )
through r. Taking �1 and �2as the input operation program P,
we can get the output �1 and �2 , where �1= sin (�1 ), �2=
sin ( 2 * � +�1 ), drive the GEP mining and the relation R
between them and eliminate redundancy. Then we can get R:
sin (x) = sin (2 * � + x).
Finally, MRs are validated.

IV. EXPERIMENTAL DESIGN

To explain the performance of GEP in automatic mining
MR more clearly, this paper proposes three problems and
designs two experiments for this purpose. In the first part of
the experiment, GEP is applied to five representative
functions for experiments. In the second part of the
experiment, we compare GEP with AutoMR, a similar
algorithm in recent research, in terms of solving efficiency,
stability, and solving quality.

A. Research Questions
RQ1: Whether this method can obtain the MR of static
analysis identification?
Since the artificial identification of MR has low stability,

high risk, and no expansion, this paper proposes a dynamic
method to identify MR. Our means are effective if MRs
inferred by the static analysis can be identified.
RQ2: Can this method identify more MR than static
analysis?
MR static analysis method highly depends on the domain

knowledge of the software testing engineer. If this method
can identify new MR which has not been reported by the
static method, it has high productivity.
RQ3: Compared with the existing dynamic methods,
which aspects of this method are better?
Compared with the existing dynamic methods from the

aspects of efficiency, stability, quality, and diversity, the
best applicable scenarios of various methods can be
analyzed.

B. Experiment Settings
The Geppy is a computational framework implemented

by GEP[8]. To better apply the experiment, It is necessary
to set parameters reasonably.
1) GEP parameters

a) Functional operator: Elementary function is the
basic element of symbolic expression, and
addition is used as the connector of expression.
According to the prior knowledge of the problem
domain, the operator can be defined, such as the
Laplacian operator.

b) Terminal node: Variable representation is
generally used. Specific constants can be added

based on prior problem domain knowledge, such
as � for trigonometric functions.

c) Population size and evolutionary algebra:
Holding the default value for the GEP framework,
both 100.

d) The number of elitists: Only record the best three
individuals found in all generations.

e) Fitness function: MAE.
2) Testing set T: In the appropriate range, 100 random

numbers are generated as the source input, and the
follow-up input is calculated according to r to form a
set of test input pairs. The number of elements in T
is m = 100.

3) Test threshold h: The MR is accepted if the test
result is less than 0.2. Otherwise, it is rejected.

C. Experiment design
Experiment 1: For RQ1, literature [2,9,10] derived a set

of MR by mathematical properties. If this method can
identify part or all of them, then RQ1 is true. The GEP
method can obtain MR and is complementary to
mathematical derivation methods.
For RQ2, if the MR identified is not mentioned in

[2,9,10], then RQ2 is true, indicating that the GEP method
has stronger searchability than the static analysis one.
Experiment 2: For RQ3, AutoMR is one of the latest MR

dynamic identification techniques reported by literature,
which achieved more efficiency than previous algorithms.
To compare with AutoMR, We choose five representative
functions in python's NumPy library to analyze efficiency,
stability, quality, and diversity. These funcitions are arcsinh,
arctan, ceil, log, and log10.
1) In terms of solving efficiency, we compare the time

spent by a complete execution cycle of the two: both
run 30 times and record and analyze the average
execution time and the variance of the algorithm’s
execution time as the indicators of solving efficiency.

2) Relating to solving stability, since AutoMR uses
PSO to search the MR relation, PSO as an
approximate search algorithm can not find the
optimal solution every time, so AutoMR may
sometimes fail to see the results. This paper will
compare the number of times AutoMR and GEP find
the correct MR in 100 runs as the index of solving
stability.

3) Concerning the solution quality, for the polynomial
MR of different orders, AutoMR needs to be solved
separately, and it cannot effectively remove the
redundant MRs. For example, regarding MR1: sin
( x ) * sin ( x ) + sin ( 2 * � + x ) * sin ( 2 * � + x )
-2 * sin ( x ) * sin ( 2 * � + x ) = 0, and MR2: sin
( x ) -sin ( 2 * � + x ) = 0, it cannot remove
redundant one.
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4) The algebraic complexity[11] is employed as a
metric for comparing the diversity of MRs. Since
the input pattern is the same, the output pattern R is
compared. The notation (mA, kM, gJ) denote the
cost of m additions/subtractions, k
multiplications/divisions and g algebra judgments
(e.g. “<”, “>”, “≤”, “≥”, “=”). Algebra complexity of
R could be denoted as: AC(R)=m+k+g. The large
difference between the maximum and the minimum
of algebraic complexity and the large variance in the
MR set indicate that the MR set has a rich diversity.

V. EXPERIMENTAL RESULTS
1) RQ1: Table I lists the functions we used in the

existing literature, the corresponding MR for each
function, and the input and output relation for each
MR. We list the MRs equal to each other in this
table to show that 15 MRs are successfully verified.
This method can get the MR obtained by static
analysis.

TABLEⅠ

GEP identifies MRs from paper
Numerical
programs MRs Input Pattern Output

Pattern

sin[2][9]

MR1 �' = �� − � �' = �
MR2 �' = 2 ∗ �� + � �' = �
MR3 �' = � �' =− �
MR4 �' = �� + � �' =− �
MR5 �' = 2 ∗ �� − � �' =− �
MR11 �' = � − 2 ∗ �� �' = �
MR12 �' = � − �� �' =− �
MR13 �' =− � − 4 ∗ �� �' =− �
MR14 �' =− � − �� �' =− �
MR15 �' =− � − 3 ∗ �� �' =− �

MR20 �' = 2 ∗ � + 0.5 ∗ ��
�'

= 0.5 − � ∗
∗ � ∗ 2

Triangle
square [10]

MR21 �' = �, �' = �, �' = � �' = �
MR22 �' = �, �' = �, �' = � �' = �
MR23 �' = �, �' = �, �' = � �' = �

MR24 �' = 2 ∗ �,
�' = 2 ∗ �, �' = 2 ∗ � �' = 4 ∗ �

2) RQ2: Table II shows the new MR we found using
this method. We also use the test set to verify each
MR mined, and the success rate of most MR
detection is 100 %. The detection effect is generally
good, and this method can obtain new and correct
MR.

3) RQ3: Table Ⅲ compares the output pattern between
GEP and AutoMR with the same input pattern,
Figure 2-4 demonstrates the difference between the
two methods' average execution time, variance, and
support degree. To facilitate comparison, the
logarithmic coordinates are adopted. It can be found

that GEP has a shorter average time, minor variance,
and higher support for MR recognition.

4) Figure 5 shows the difference between the maximum
and minimum values of algebraic complexity and the
variance of algebraic complexity of each MR set
marked by GEP and AutoMR, respectively. The
result illustrates that the difference between the
maximum and minimum algebraic complexity of
MR identified by GEP equals 1, and the variance is
0.4. The difference between the maximum and
minimum MR algebraic complexity identified by
AutoMR is 15, and the variance is 6.30555, both of
which are larger than the former.AutoMR produces
more diverse MR than GEP.

Fig. 2. Average execution time

Fig. 3. The variance of running time

Fig. 4. Support degree score

Fig. 5. Algebra Complexity of MR set identified by GEP and AutoMR
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TABLE II
New MR identified by GEP

Numerical
programs MRs Input Pattern Output Pattern

sin[2][9]

MR6

�1' = (�1 + �2)/2
�2' = (�1 + �3)/2
�3' = (�2 + �3)/2
�4' = �1 + �2 + �3

�4' = 2 ∗ �1' ∗ �2' ∗ �3' +
�3 ∗ (5 ∗ �1' ∗ �1' − 3)

MR7 �' = ��/2 − � �' = −2*Y + 2 ∗ (��)
MR8 �' = 3 ∗ � �' = 2 ∗ � − 3 ∗ � ∗ � ∗ �

MR9 �1' = �1 − �2,
�2' = �1 + �2

�2' = �1' * (3 ∗ �1 ∗ �1 − 8 ∗ �2
4)

MR10 �1' = 3 ∗ �,
�2' = 5 ∗ � �2' =− �1

' ∗ �1
' /� + �1

' + � − 14

MR16 �' =− 0.5 ∗ � − 0.75 ∗ �� �' = 0.5 − 0.5 ∗ � ∗∗ 0.5

MR17 �' = � − 2.5 ∗ �� �' = (� ∗∗ 8 ∗ (2.25 − 14.137166943 ∗ �)
+2)/(4 ∗ 14.137166943 ∗ � − 2.25)

MR18 �' = 2 ∗ � − 1.5 ∗ �� �' = 1 − 2 ∗ � ∗ �
MR19 �' =− � − 2 ∗ �� �' =− �

Triangle
square [10]

MR25
�' = 2�2 + 2�2 − �2,
�' = �,
�' = �

���������(�', �', �') = 161 ∗ ���������(�, �, �)/160

MR26
�' = �,
�' = 2�2 + 2�2 − �2,
�' = �

���������(�', �', �') = ���������(�, �, �) + 16 + 64/���������(�, �, �)

MR27
�' = �,
�' = �,
�' = 2�2 + 2�2 − �2

���������(�', �', �') = (���������(�, �, �) ∗∗ 2 + 89
∗ ���������(�, �, �)/5 + 80)/(���������(�, �, �)
+ 10)

MR6

�1' = (�1 + �2)/2
�2' = (�1 + �3)/2
�3' = (�2 + �3)/2
�4' = �1 + �2 + �3

�4' = 2 ∗ �1' ∗ �2' ∗ �3' +
�3 ∗ (5 ∗ �1' ∗ �1' − 3)

MR7 �' = ��/2 − � �' = −2*Y + 2 ∗ (��)
MR8 �' = 3 ∗ � �' = 2 ∗ � − 3 ∗ � ∗ � ∗ �

TABLEⅢ
The examples identified by GEP and AutoMR

Numerical
programs MRs Input Pattern GEPOutput Pattern AutoMR Output Pattern

arcsinh MR6 �' =− � �' =− � �2 + � ∗ �' − 2 ∗ � − 2 ∗ �'2 = 0
arctan MR7 �' =− 2.732 − 2 ∗ � �' =− � −3.113 + 2 ∗ � ∗ �' + 2 ∗ � + 2 ∗ �' = 0

ceil MR8 �' = − 1.99 − � �' =− � − 1
0.9999999999800762 − 2 ∗ �2 + � ∗ � ∗ �'

−� ∗ �' + 2 ∗ � ∗ �' ∗ �' − � + �'2 + �'3 + �' = 0

log MR9 �' =− 0.002 − � �' = �
�2 + �3 + 2 ∗ � ∗ � ∗ �' − 2 ∗ � ∗ �'

+� ∗ �' ∗ �' − � + �'2 + �' = 0
log10 MR10 �' = 2 ∗ � �' = � + 10/(10 ∗ � + �) −0.602 − 2 ∗ � + 2 ∗ �' = 0

VI. DISCUSSIONS

It can be seen from the experimental results that when
compared with the static analysis method, it is found that
this method can identify the existing MR and has a more
vital solving ability.
Compared with the dynamic analysis methods such as

AutoMR, we found that the solution efficiency, stability,
and quality of this method were higher than those of the
latter, the efficiency was high, and the quality of the
identified MR test results was excellent. In the obtained MR
expression, AutoMR fixes MR as a higher-order polynomial,

and the result lacks sufficient reduction, making AutoMR
superior to GEP in terms of algebraic complexity index.
Therefore, it is necessary to study comprehensive diversity
metrics to evaluate MR recognition more scientifically.

VII. CONCLUSION
This paper proposes an MR recognition technology based

on GEP, transforming the transformation relation
recognition problem into a symbolic expression regression
problem. This method can identify the relation obtained by
static analysis, has more quantity, has a more
straightforward form, and can use prior knowledge.
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Compared with the existing technologies such as AutoMR,
it is found that the solution efficiency, solution stability, and
solution quality are higher than those of the latter, and
several new MR can be found in some tested programs. It is
proven that the results are excellent and can be used as an
extension.
In the future, we will consider extending the method to

complex scenes, such as high dimension input and the
piecewise functions. In addition, it is considered to improve
the quality and performance of the recognition of this
method.
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