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Abstract—Crowdsourcing testing can reduce testing costs and
improve testing efficiency. However, crowdsourcing testing gen-
erates many test cases, from which testers need to select task-
related test cases for execution. Furthermore, it is difficult to get
the labeled test cases, and it is also costly to mark the test cases
manually. Even in the set of labeled test cases, there is still an
uneven distribution of labels.

To address the difficulties mentioned above, this paper pro-
poses a test case classification framework based on Few-shot
Learning. The framework augments test cases and extracts rele-
vant information for vectorization, collects the category lexicon of
test cases using the BiLSTM model, and finally classifies the test
cases. To verify the effectiveness of the classification framework,
we selected thousands of test cases from three crowd testing
projects to conduct in-usability evaluation experiments.

The experimental results show that our classification method
has a higher accuracy rate than existing classification methods.

Keywords—Test Case, Few-Shot Learning, Classification
Algorithm, Category Label

1. INTRODUCTION

With the change in the software development model and
the development and standard application of new software
technologies such as artificial intelligence, big data, cloud
computing, and the Internet of Things, software testing nowa-
days faces various challenges. For example, in the testing of
Al software, testing is often black-box: from the viewpoint
of the test sample, the sample usually has a considerable
limitation; from the viewpoint of the testing process, the whole
process has an extended period, and it is challenging to realize
automated testing; from the viewpoint of the test results,
the results are also uninterpretable and low robustness. The
testing for IoT is faced with strict test environment complexity,
high reliability, real-time, and compatibility requirements. In
the future, software testing will progress in the direction of
agile, highly automated, cloud-based, service-oriented, and
intelligent , and how to provide rapid feedback on software
quality, improve testing efficiency, improve resource usage
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efficiency, and reduce costs is the eternal theme of software
testing on the way forward.

Test cases are the core part of software testing, and excellent
test cases can guarantee software testing quality. Crowd-
sourcing testing is an emerging trend in software testing. It
makes full use of the advantages of crowdsourcing and cloud
platforms, has the characteristics of fast testing speed, and the
industry highly favors low testing costs. It is very suitable
for companies and individuals who lack professional testers
and standardized testing. The crowd testing process generates
many test cases, and due to the different levels of crowd testing
workers, testers often need to screen the test case set and select
suitable cases from them for inspection and later use.

Test cases for crowdsourcing tests usually have many char-
acteristics, including sparse category labels, uneven distribu-
tion of category labels, and incorrect category labels. It is
sometimes complicated for testers to distinguish the use cases
and judge the accuracy of the use case classification, resulting
in poor reuse of test cases for crowdsourcing testing. Although
it is accurate to re-label or change these labels manually, it is
inefficient and difficult to maintain a high accuracy rate when
the set of test cases is extensive. To address these problems,
we propose to refine test case content and identify test case
categories by generating reasonable labels to assist testers in
better selecting and utilizing existing test case sets.

In a crowdsourced test, the crowdsourced worker will man-
ually create test cases for a given test target, and a test case
set is a collection of all test cases under the same test target.
Each test case contains several attributes such as test case
name, test process, test case description, label, and test target
category, where the label attribute indicates the keyword set
of the test case and the test target category attribute refers
to the category of the framework module tested by the test
case such as functional integrity, user experience, page layout,
abnormal exit, etc. The generalized labels in this framework
usually include the two specific attributes of labels and test



target categories.

We design an automatic test case classification framework
to address the lack of inaccurate category labels for test cases
in crowdsourcing testing. We can complete test case label
extraction and category classification based on test case text
analysis and small sample learning. The framework can be
based on accurate data such as test cases of crowdsourcing
tests and their associated test reports, and use methods such as
text feature extraction and deep learning to deeply mine them
and generate representative labels indicating the categories and
scenarios of the test cases, helping testers manage test cases
and reduce testing costs.

II. RELATED WORK AND BACKGROUND

A. Data Augmentation

Data augmentation is the process of generating the data
required by the user from the original data by means of
artificially set variation methods. With appropriate data aug-
mentation methods, the problem of insufficient training data
in machine learning is significantly alleviated. The benefit of
using data augmentation is not only that there is more of it,
but also that the data is evenly distributed. Data augmenta-
tion can be divided into image data augmentation methods,
text data augmentation methods and other data augmentation
methods. Text data, which is made up of a combination of
characters, cannot be amplified using the widely used image
amplification methods. Because image augmentation is rela-
tively easy compared to text augmentation, data augmentation
methods have been used extensively in the CV domain first,
where researchers have been able to implement image blurring
based on various matrix operators, modifying the colour of
images based on modifications of colour channel values, and
geometric transformation of images through lossless geometric
transformation methods derived from mathematical methods,
which are common in the traditional CV domain. Batch aug-
mentation of images can be achieved quickly with packaged
Python libraries such as imgaug. Natural language is repre-
sented by symbols in computers, and it is difficult to generate
or otherwise modify these symbols by simple mathematical
equations; any change in the symbols can drastically alter
the meaning of the text. Therefore, text augmentation is more
difficult than the other two types of augmentation [1].

The back-translation method is derived from linguistics,
where back-translation methods are used to learn other lan-
guages and verify the accuracy of language translations. In
the field of data augmentation, back translation augmentation
is the process of translating keyword text data into another
language using a neural network translation system, and then
translating the text back into the original language using
that neural network translation system. The back-translation
method can generate a large amount of similar text data
because of the inaccurate translation of the neural network
translation system. The back-translation augmentation method
is able to retain the basic semantic information of the text.J
Ma [2] has validated back-translation augmentation and the

experimental results show that back-translation augmentation
can improve the performance of the text classification model.

Noise augmentation refers to the generation of noise by
replacing words, deleting words or characters in the text data,
and generating new data that is similar to the original text data.
Jason W. Wei [3] proposed an EDA augmentation method,
which includes inserting random words into the text, using
synonyms for substitution, randomly swapping the order of
words in the text, and randomly deleting characters or words
in the text. The method achieves good results with a small
amount of text training data.

Zhang Xiang [4] wanted to generate new data by replacing
words with synonyms using an existing synonym lexicon
because of insufficient experimental data. The experimental re-
sults showed that this method could improve the performance
of their text classification model.

S Kobayashi [5] proposed a new method of data augmen-
tation for labelled sentences, called contextual augmentation.
Words are randomly replaced with other words predicted by a
bidirectional language model at word positions. The language
model is adapted with a label conditional architecture, which
allows the model to augment sentences without destroying the
labels. This can be used to augment data for text classification.

HOU Y [6] proposed a sequence-based data augmentation
framework that uses the same semantic alternatives to a word
in the training data to augment a word, regardless of its
relationship to other words. For the first time, diversity levels
are incorporated into the corpus representation, allowing the
model to produce a diverse corpus. These diversity-enhanced
corpora help to improve the language comprehension module,
but whether the method is somewhat restrictive and has wide
applicability needs to be further explored [7].

SimBERT [8] is an integrated retrieval and generation BERT
model based on UniLM, which was open sourced by Jianlin
Su of Zhuiyi Technology in 2021. SimBERT can be used
to generate similar text from existing classified text data, or
to build a corpus of test cases to retrieve similar text from
the corpus to obtain pseudo-labelled test case text data with
good semantic relevance, which can effectively improve the
effectiveness of the classifier.

The two text data augmentation routes, back translation
and noise addition, can help deep learning models improve
performance and generalisation by producing the required
data. However, there is currently no text augmentation method
for keyword text data, and generic text augmentation methods
may not be able to generate the required augmented keyword
text data when a keyword text is augmented.

B. Text Classification

Text classification [9] is the process of automatically clas-
sifying a text set using a machine according to a specific
classification system or rules. And is a fundamental task in
natural language processing tasks, which aims to organize
and categorize text resources, and is also a crucial part
of solving the text information overload problem. The text
classification process generally includes text preprocessing,



feature extraction, model construction, and classifier training
processes [10].

According to whether labeled data is required or not, text
classification methods can be classified as unsupervised text
classification [11], semi-supervised text classification [12], and
supervised text classification [13]. Unsupervised text classifi-
cation does not require training data with category labeling.
Supervised machine learning methods require large amounts
of labeled training data, but the classification results depend
highly on manual labeling, which is costly. Semi-supervised
text classification algorithms require only a small amount of
labeled data and build classification models by learning the
potential features of a small amount of labeled data and a
large amount of unlabeled data and making predictions for new
data. Traditional classification models include plain Bayesian,
nearest neighbor, decision tree, support vector machine, etc.

Compared with traditional classification models, non-
traditional text classification methods can access higher-level
and more abstract semantic features in text, compensating for
the shortcomings of human-designed features in traditional
models.

Non-traditional text classification methods include deep
learning [14], ensemble Learning [15], transfer learning [16],
reinforcement learning [17], etc. Integration learning improves
the accuracy of text classification by fusing the classifi-
cation results of multiple text classifiers, which preserves
the variability among the base classifiers and improves the
robustness of the model; migration learning trains language
models on a large-scale general corpus and fine-tunes them
on specific datasets, which can reduce the training difficulty of
the models and save the computational resources for training;
reinforcement learning models the text classification problem
by the core ideas of trial-and-error and delayed payoff. Rein-
forcement learning models the text classification problem as a
discrete and ordered decision process with high interpretability
through the core ideas of trial-and-error and delayed payoff.

Bi-LSTM [21] is a popular model in the field of deep
learning and a variant of long and short-term memory network.
LSTM is able to perform better on longer sequences than a
normal RNN. However, in some cases, the prediction may
need to be determined by a combination of several inputs
before and several inputs after. The bidirectional LSTM adds a
backward layer to the forward layer of the LSTM, preserving
the important information of several inputs after, so that the
prediction result of the network will be more accurate.

Text classification can be applied to several fields. The
accurate classification labels generated by text classification
methods provide powerful support for resource retrieval and
personalized recommendation in search and recommendation
[18]. In sentiment analysis [19], text classification can analyze
the sentiment tendency of user comments, help analyze hot
topics, understand user habits, and monitor crisis public opin-
ion. In the field of dialogue system [20], the classification of
questions raised by users enables intelligent customer service
to provide answers to users’ questions instead of human
customer service, effectively reducing operating costs and

improving user experience.

C. Few-Shot Learning

The concept of Few-Shot learning was formally introduced
by Li in 2003 [22], who argued that old categories already
learned can help predict new categories when the new category
has only one or a few labeled samples. Few-Shot learning
is a new machine learning paradigm proposed to learn from
a limited number of examples with supervised information,
learning classifiers when only a few labeled samples are given
for each category. In addition to wanting to make artificial
intelligence learn like humans, Few-Shot learning can learn
models for these rare cases when it is difficult or impossible
to obtain enough samples, such as in a drug discovery task
where Few-Shot learning can predict whether a new ingredient
is toxic. Few-Shot learning can also help alleviate the burden
of collecting many samples with supervised information and
reduce the cost of data collection and computation, as labeling
unlabeled data can be time- and labor-intensive.

Existing work on Few-Shot learning can be divided into
data, models, and algorithms [23]. From the data perspective,
Few-Shot learning approaches mainly use prior knowledge to
augment the training data and enhance the sample set to enrich
the supervised information for training. Data augmentation can
be performed by artificially defined rules, such as panning
[24], flipping [25], cropping [26], and scaling [27] in the image
domain. However, these augmentation rules depend heavily
on domain knowledge and require expensive labor. Firstly,
they are challenging to produce effects in other datasets and,
secondly, to enumerate all possible augmentation rules, so
manual data augmentation cannot fully solve the Few-Shot
problem [28]. There are also three more advanced types of data
augmentation methods. (1) augmentation of Few-Shot datasets
using unlabeled data [29]. When many weakly supervised or
unlabeled samples exist for the target task or category, some
of them can be selected to give pseudo-label to enhance the
training set. (2) Augmenting the training set by augmenting
sample features [30] [31]. Feature augmentation of samples
using auxiliary datasets or additional attributes improves the
low feature diversity due to the sample size in Few-Shot
learning. (3) Enhancing the training set by aggregating and
adapting samples from other datasets. Using generative adver-
sarial networks [32] to determine whether the newly generated
samples belong to the sample classes in the training set, the
newly generated samples are synthesized into the original
dataset by corrupting and generating samples from auxiliary
datasets.

From the modeling perspective, Few-Shot learning mainly
focuses on using old knowledge to learn new knowledge by
transferring the already learned source domain knowledge to
a new target domain with particular relevance to help train the
classification model. Depending on their methods, they can be
divided into metric learning based, meta-learning based, and
graph neural network based methods.

Among the metric learning based methods, Koch were the
first to propose using twin neural networks for one shot image



recognition in 2015 [33], learning metrics from data and using
the learned metrics to compare and match samples of unknown
sample categories. Snell proposed a prototype network in
2017 [34], where the average of sample vectors for samples
belonging to the same category is obtained as the prototype for
that category. The model is continuously trained by Gao, and
Sun added an attention mechanism to the prototype network in
their subsequent work [35] [36], demonstrating that different
samples and features are essential for the classification task.

From an algorithmic perspective, Few-Shot learning focuses
on providing the best initialization parameter for the model
[37] and subsequent strategies for fine-tuning the optimization
of that parameter [38]. When the large data set and the target
few shot data set are similarly distributed, it is common to
pre-train the model on the large-scale data and fine-tune the
parameters of the connectivity layer of the neural network
model on the Few-Shot data set to obtain the fine-tuned model
finally. However, in real-world scenarios, the data distributions
of the target and source datasets are often not similar, and
using fine-tuning methods can lead to the overfitting of the
model on the target dataset.

III. MOTIVATION EXAMPLE

A. Test Cases

Test cases usually consist of multiple attributes. Common
test case attributes include id, name, method, design time,
designer, end condition, product_version_module, premise and
constraint, test process, test requirement, adoption of guide-
line, etc. Table I shows a brief test case. In professional
testing scenarios, testers often manually record used test
cases in text form for later reuse. As the style of test cases
recorded by different organisations varies, we have selected
three attributes, product_version_module, test process, and test
requirements which is also called expected result, that will be
included in all test cases for further analysis and classification.
The product_version_module helps to locate the function and
location of the test case application, and the test process and
test requirement have a large number of test-related vocabulary
inside, which can help find the relevant types of tests.

B. Attention Mechanism

The attention mechanism refers to focusing on the infor-
mation that is more critical to the task among many inputs
to the model and reducing attention to other information.
We combine a Bi-directional Long Short Term-Memory with
attention mechanism and a lexicon for helping to solve the
problem of sparse annotation data. Important words can be
given higher attention weights during text classification due to
attention mechanism. Tablell is an example of a test case for
login and logout functions. Based on the attention mechanism,
we can select some strongly related words to the category
based on high weights to build a lexicon to help generate
pseudo labels. BILSTM with attention’s schematic diagram is
shown as Figl.

TABLE I
EXAMPLE OF TEST CASES

id TC7

name Review use case tag tests

Test case management classification system

r rsion_modul .
p oduct_version_module - Review test case tags

premise_and_constraint Users are authorized and authenticated

1.User login for reviewer account, 2.Click
the "Review Test Case Tags” button in the
menu bar, 3.Click the ”View” button of a
test case in the test case list, 4.Click the
“Edit Tags” button, 5.Click the ”Finish”
button after modifying or not modifying the
label.

test_process

1.Display menu bar specific to reviewer
permissions, 2.Showing the list of test cases
to be reviewed for tags, 3.Display the test
case details page of the pending review
tab, 4.The test case details page enters edit
mode, at this time you can edit the tag
information, but you cannot edit other test
case related information, 5.The system pops
up “audit completed” prompt, 6.The status
of the test case is changed to ”Approved”
or "Tag failed” and disappears from the list
of tags to be reviewed.

test_requirement

Attention Layer

Backward Layer

Forward Layer

Input Layer

Fig. 1. Bi-LSTM with Attention’s Schematic Diagram

TABLE I
EXAMPLE OF ATTENTION WORDS

Words Attention Score
Click 0.035
Quit 0.37
Login 0.43
Open 0.004

C. Lexicon

We use an attention-based LSTM to construct a set of
critical words for text classification. Based on the attention
weights of each category, the attention-based LSTM extracts
a set of relevant words. We select the top n unlabeled data
with the highest confidence level from each category. Then,



we select the m words with the highest attention weights from
each of the selected n data and produce a set of n words
consisting of m words. We consider the collected word sets
as the lexicon of the corresponding categories. Tablelll shows
an example of the set of keywords in each lexicon obtained
from the initially trained classifier.

TABLE III
EXAMPLE OF LEXICONS

Type Lexicon

Login and Logout Login, Logout, Failure, Account, Excep-

Functional

. Problem, Lack, Can’t, Need, Function......
Requirements

. Error, Verification, Hint, Correct, Experi-
User Experience

Page Layout

Performance Slow, Network, Latency, Fluctuation......

Risks, Alarms, Triggers, Changes, Normal,

Security Abnormal......

D. Pseudo Labeled Test Cases

Pseudo labeled test cases are test cases that were originally
unlabeled and, after model iteration, have labels predicted by
the classifier or lexicon. Pseudo labeled test cases can be added
to the training set and used as the original labeled cases to train
the classifier. Experiments [39] have shown that expanding the
training set with pseudo labeled test cases results in better clas-
sification of the trained classifier. TableIV shows the categories
predicted by the classifier and the lexicon for the test case
respectively and the confidence of the categories predicted by
the classifier. According to the pseudo-label assignment rules
specified in Part 4, assume confidence threshold q = 0.9 and
matching numbers of words threshold k1 = 3 and k2 = 4.
For TC_1, the classifier prediction confidence is less than 0.9
and the matching numbers of words is equal to k2, so the
lexicon prediction category is assigned to TC_1 as a pseudo-
label. For TC_2, the classifier prediction confidence is greater
than 0.9 and the matching numbers of words is equal to ki,
so the classifier prediction category is assigned to TC_2 as a
pseudo-label.

IV. FRAMEWORK

The framework can be divided into three stages, including
the data preparation stage, test case classification stage, and
lexicons collection stage. The data preparation stage performs
data augmentation and enhancement on the test case data
and then pre-processes the augmented data set with word
separation, lexical filtering, deactivation, synonym conversion,
etc. The pre-processed keyword text is trained with word
vector and bag-of-words models. The primary function of
the test case classification stage of the test case is to train
the classification model and provide classification results. The

TABLE IV
TESTER CLASSIFICATION QUALITY REVIEW SCORE SHEET

. s,

Confidence L;i:f;;?_s
Test Correct Classifier’s of the tion(Matchin.

Case Label Prediction Classifier’s g

Prediction Numbers of
‘Words)

TC_1 1 1 0.85 1(4)

TC_2 3 3 0.96 3(3)

TC_3 2 2 0.74 4(5)

TC_4 5 5 0.91 3(1)

TC_n 1 2 0.88 13)

primary function of lexicons collection stage is to collect
the words that can represent a category noticed during the
classifier’s training, form a lexicon, and assist the classifier in
determining the test case category.The overall framework is
shown in Fig2.

A. Data Preparation

The primary function of the data preparation stage is to
process the test case data acquired by the test case management
module and save the processed intermediate data in the file
frame. The original test case data obtained is difficult to be
understood by the computer, so it is necessary to extract
the test case features after filtering the dirty data by various
conditions for use in the classification model. For the stock
test cases, this module first uses them for a round of data
augmentation to enrich the dataset and then transforms them
into word vectors using LTP tools, the Word2Vec method, and
the Word Embedding method for training the classification
model.

The whole data preparation stage is processed as shown in
Algorithm 1. Firstly, this framework will filter the test case
data, such as test cases with test categories or program ex-
ceptions, test cases with empty test requirements, and remove
test cases with pending review status. (Linel) After that, the
data of test cases will be augmented. This framework uses
the Simbert model to generate text with semantic similarity to
the test cases, expand the number of test cases for subsequent
neural network training, and save the expanded test case text to
the file box. (Line2-4) Immediately after that, this framework
will use LTP to segment the test case text data into words,
remove the deactivated words, filter the words that are not
verbs or nouns, and unify the synonyms for feature extraction.
(Line5-7) After that, the framework will count the number of
word occurrences in S2 and generate a sorted dictionary DI,
where Key is the word and Value is the word’s occurrence
number. Then the framework will Generate dictionary D2,
where the Key is the word, and the Value is the word’s index.
(Line8-11) After generating a dictionary, the framework trains
the Word2Vec model on historical test case data, builds word
packages, and saves them. Finally, the word embedding vectors
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Fig. 2. The Framework of Few-Shot-Based Test Case Classification

Algorithm 1 Data Preparation

Input: Test case set S, length of Dictionary word2index [1,
embedding size [2

Output: The vectors of test casesM?2

1: S < Clean(S) > Function Clean( used to filter test case

set

for each test case t € S do
S1 <= Simbert(t)

end for

for each test case t1 € S1 do
S2 < LTP(t1)

end for

for each test case t2 € S2 do
D1 < wordcount(¢2)

end for

: D2 < wordindex(D1)

for each test case t2 € S2 do
M1 <= word2index(t2,D1)

end for

. M2 <« embedding(M1,11,(2)

return M2,

R A A S o

—
—_

of the test cases are obtained on the Word2Vec model, and the
word embedding vectors corresponding to the test cases are
saved to the file box to complete the process. (Linel2-16)

B. Test Case Classification

The primary function of the test case classification stage is
to train the bidirectional LSTM neural network model as the
initial classification model for test cases using the historical
test case word vectors obtained from the test case feature
extraction phase.

First, build the bidirectional long and short-term mem-
ory neural network, define the model’s input layer, hidden
layer and forward computation, add attention layer into net-
work.Then, obtain the word vector dataset of historical test
case data in the document framework and divide the dataset
into a training set consisting of labeled test case word vectors,
a test set and a development set consisting of unlabeled test
case word vectors, where the category lexicon collection mod-
ule uses the development set. Finally, The initial classification
model with the highest classification accuracy on the test set
is obtained after several rounds of training using the training
set.

In the classification model of this paper, the attention
mechanism assigns a weight to each word, representing the
importance of the word in the test case. A softmax function
is also used to normalize the attention weights of each word
to represent the importance of each dimension (each word) in
the word vector of the test case in this prediction category.
The set of vectors input to the LSTM layer is denoted as



H : [h1,ha,- - -, hy]. The weight matrix r obtained from its
Attention layer is given by

M = tanh(H) (1)

o = softmazx(w? M) (2)

r=HT 3

H € R *T qwg the dimension of the word vector,w? is
a transpose of the parameter vector obtained from training
learning.

C. Lexicon Collection

Important words tend to have higher attention weights in
classification, and the attention mechanism also assigns higher
weights to words that represent the input data categories.
Even if the performance of the initial classifier is poor, the
classifier assigns higher weights to the essential words with
high confidence in the predicted data. Therefore, this algorithm
combines a deep learning classifier and lexicon matching,
which can solve the problem of sparsely labeled data to some
extent. By using the attention weights in the LSTM-based
trained classifier to obtain a more extensive reliable training
set, the unlabeled samples are transformed into samples with
algorithm-assigned pseudo-labels to be used as training sets.

The primary function of the lexicon collection stage is
to add the Attention mechanism to the bidirectional LSTM
neural network, visualize the attention layer, focus on the
attention weight of the words in the specific test cases in the
calculation of the classification model, collect representative
words for each category of the test cases, determine the test
case categories by pattern matching methods in the case of
low confidence of the initial classification model prediction,
and improve the classification Accuracy.

The flow of the whole lexicon collection stage is shown in
Algorithm 2. In this stage, we first add the attention layer to
the bidirectional long- and short-term memory neural network
to obtain the attention weights of the word vectors. After
that, we obtain the word packets of the Word2Vec model
saved in the test case feature extraction module from the
data preparation stage and obtain the correspondence between
the word vectors in the word packets and the actual words.
After that, we initialize the category lexicon and initialize
the word set of each category as empty. Initialize the test
case confidence lexicon to empty and then sort the lexicon
from highest confidence to lowest confidence. Obtain the
initial classification model saved in the test case classification
module, and obtain the test case word vector development set
assigned to the test case classification module. (Linel-4)

After that, we use the development set as the input to the
initial classification model. The classification model performs
classification prediction on the test cases in the development
set and obtains the classification categories and prediction
confidence levels. (Line5-8) When the prediction confidence
is less than q, the word vector is matched in the word set
according to the pattern matching rule. The category of the
current word vector is predicted based on the number of

Algorithm 2 Lexicon Collection
Input: Dictionary of word2index D1, development set of test
cases’ vectors V1, training set of test cases’ vectors V2,
confidence’s threshold ¢, k1, k2
Output: classfication model M
1: initialize Lexicon [
2: initialize Dictionary of testcase-confidence D2; for type ¢
3: initialize Transfer set of test cases’ vectors V'3
4: train classification model M by V2 using BiLSTM with
attention

5: for test case’s vector v in V1 do
6: t1, ¢ < predict(M, v)

7: t2, k < match(l, v)

8: using Lexicon [

9: if c < ¢ and k >= k2 then
10: t2 < label v

11: transfer(v, V1, V3)

12: else

13: if c >= g and £ >= k2 then
14: tl < label v

15: add v to D2y

16: transfer(v, V1, V3)
17: else

18: continue

19: end if

20: end if

21: end for

22: select top n confidence’s test cases vectors V4 in D2;
23: for test case’s vector v in V1 do

24: add top m attention’s word to Lexicon [
25: end for

26: if V3 ! = null then

27: V2 «V2+V3

28: back to Line 4

29: else

30: save M

31: return M,

32: end if

matched words, and the word vector of the predicted category
is added to the transfer set. (Line9-11) When the prediction
confidence is greater than or equal to g, the test case category
is marked as the category predicted by the initial classification
model and added to the test case confidence dictionary. The
word vectors of the predicted category are added to the transfer
set. (Linel2-16) If the current word vector category is still not
predicted according to the pattern matching rules, the word
vector remains in the development set. (Linel7-18)

After that, the top n test case word vectors with high
confidence are selected in the test case-confidence dictionary.
The top m words with great attention in each word vector are
selected with the word package. These words are added to the
word set of the category corresponding to that word vector.
(Line22-24)

If the transfer set is not empty, the use case word vectors



in the transfer set are transferred from the development set to
the training set, and the initial classification model is retrained
based on the training set. (Line25-27) If the transfer set is
empty, the current initial classification model is saved as the
final classification model, ending the process. (Line29-30)

Where the lexicon-based pattern matching rules mentioned
in Algorithm 2 is as follows, where k1 and k2 are the numbers
of words matched by the current test case in the lexicon and
k1 < k2.

(1) If the classifier predicts the unlabeled test cases with
high confidence and at least k1 matching words in the lex-
icon, the test cases are labeled according to the classifier’s
prediction.

(2) If there are at least t2 matches in the lexicon, then the
data are labeled according to the predictions of the lexicon.

Algorithm 2 represents assigning weights to words, gener-
ating a lexicon, and acquiring pseudo-labels in the Lexicon
Collection stage. After the test case acquires the pseudo-label,
it can be used as new training data to help iterate the model for
training and thus improve the model’s classification accuracy.

V. EXPERIMENT

After verifying the availability and reliability of the test
case management and classification system, we also need to
evaluate the classification effect of the test case classification
service, checking the effect of the classifier generated by the
test case classification technique based on few-shot learning.

A. Research Questions

The empirical study is conducted to answer the following
research questions.

RQI1: For the BiLSTM model with an added attention
mechanism, can augmentation of the test cases im-
prove the classification effect?

Whether the category labels generated by the classi-
fier in the small sample scenario are reasonable and
accurate?

Whether the generated category labels can help ex-
perts review test case categories?

RQ2:

RQ3:

B. Experiment Object

To explore the above questions, we evaluate our method on
three datasets of test cases obtained from real crowdsourced
testing competitions. The three test case datasets come from
two different fields: entertainment and tools. The number of
test cases in the dataset is shown in Figure 3.

C. Experiment Environment

We implemented our experiment on macOS 10.13, running
on an Intel Core i5 CPU @2.7GHz with 2 cores and with
RAM size of 8GB.

Test case collection scale statistics

Fun GIF

Aerospace Recognition Controllable

System

Fig. 3. Test case collection scale statistics of Crowdsourced Testing

D. Experiment Design

To verify whether augmentation of the test cases can im-
prove the classification effect of the BILSTM model with an
added attention mechanism, we designed comparison experi-
ments. We chose the same test case dataset. In the experimental
procedure, the standard procedure augmented the test cases
and then performed text processing and vectorization of the
data; the comparison procedure did not augment the test cases
but performed text processing and subsequent operations on
the test cases directly.

In order to verify whether the class labels generated by
the classifier used in this system are reasonable and accurate
enough in the small sample scenario, we set up comparative
experiments, using the test case classification algorithm based
on small sample learning, support vector machine algorithm, k
nearest neighbor algorithm and naive The Bayesian algorithm
builds classifiers on three datasets. These classifiers use 20%
of the data set as the training set for training and 80% of the
data set as the test set to simulate the fact that the number
of classified samples in the test case set accounts for a small
number of total samples in the real scene, Count the accuracy
of each classifier to see if our algorithm is superior.

Whether the class labels generated by the validating clas-
sifier can help experts review test case classes and testers
manually classify test cases. We set up a comparative ex-
periment and divided 12 testers into two groups, A and B.
Group A used the test case classification service to generate
category labels as a reference for manually classifying test
cases, and group B did not use the classification service to
manually classify test cases. We asked testers to manually fill
in the categories for the test cases in the three sets of test
cases and counted the time they spent manually completing
the classification to explore whether the classifier could help
reduce the cost of classifying test cases. At the same time, we
invited three experienced testers to act as review experts to
score the accuracy of the testers’ manual classification of test
cases, and to explore whether the classifier can help improve
the classification quality of test cases.

VI. EXPERIMENT RESULTS

TableV shows the classification results of different algo-
rithms on the same test case dataset as the training set,



where the row data represent the accuracy of the classifier
trained by each classification algorithm on different datasets,
and the column data represent the classification accuracy of
each dataset on the classifier trained by different classification
The classification accuracy of each data set on the classifier
trained by each classification algorithm is represented in the
column data. We can see that without applying the test case
augmentation method, here is a significant decrease in the
classification results of this algorithm. The performance was
particularly pronounced on the third item, where the accuracy
dropped by 11% , and the average accuracy dropped by almost
10%.

Answer to RQ1: After removing the test case augmentation
module, there is a significant decrease in the algorithm’s
accuracy. The test case augmentation can improve the classi-
fication effect for the BILSTM model with an added attention
mechanism.

TABLE V
LIST OF CLASSIFICATION ACCURACY RESULTS

Autonomous
Aerospace and Fun GIF
Classification Recognition controllable crowd-
algorithm Practice management sourced
Competition system for testing
the final
Our Algorithm 0.51 0.57 0.48
Algorithm
without Simbert 0.44 0.50 0.37
SVM 0.47 0.51 0.44
KNN 0.33 0.42 0.32
Naive Bayes 0.20 0.24 0.17

TableV also shows that our algorithm has a classification
accuracy of 57% on the best performing items and 48% on the
worst items. Meanwhile, the best accuracies of other general
classification methods are 51% and 44%, respectively. Our
classification algorithm can effectively improve the accuracy
of test case classification.

Answer to RQ2: Compared with existing algorithms,
our algorithm has a significant improvement in inaccuracy.
Therefore the category labels generated by the classifier in
the small sample scenario are reasonable and accurate.

Table VI shows the average time statistics of the two groups
of A and B testers when they are asked to classify unclassified
test cases in different test case sets. It can be seen that with the
help of the class labels generated by the classifier, the average
statistical time of testers in group A is shorter than that of
testers in group B by more than 6 minutes, which greatly
improves the efficiency of manual classification of test cases.

Table VII shows the evaluation status of the three review
experts on the classification quality of each test case set by
each tester. The method of scoring and calculating the average
score is used to reflect the classification. Quality, the score

TABLE VI
STATISTICS OF TESTER CLASSIFICATION TIME

Average Average
Dataset classification time of | classification time of
group A group B
Aerospace
Recognition 19.3min 25.1min
Practice
Competition
Autonomous
and controllable
management 25.2min 34.7min
system for the
final
Fun GIF
crowdsourcing 20.2min 27.9min
test
TABLE VII

TESTER CLASSIFICATION QUALITY REVIEW SCORE SHEET

lfl‘:lvlifgz er" 1A | 1B | 2A | 2B | 3A | 3B
El 82 | 74 | 83 | 77 | 81 | 72
E2 80 | 72 | 85 | 81 | 79 | 71
E3 85 | 83 | 91 | 86 | 83 | 77

can be from 1 to 10 points. It can be seen that the average
score of testers in group A on the same dataset is higher
than that of testers in group B, indicating that the class labels
generated by the classifier can help improve the quality of
manual classification test cases.

Answer to RQ3: By comparing the two control groups in
terms of both test completion time and scores, we can con-
firm that the category labels generated using our framework
is relatively accurate and can help experts review test case
categories.

VII. THREATS TO VALIDITY

Although test case classification techniques based on small
sample learning have been used in real test case management
platforms with some success, it supports a more reasonable
classification of incremental test cases belonging to the set of
historical test cases with a small number of already classified
test cases. However, there are still many areas for improvement
and continued research in implementing the framework and
experiments. First, due to practical factors, the data size of
the test case set used for experiments at this stage is small
and more suitable for processing by machine learning. The
small sample-based test case classification technique belongs
to the deep learning and neural network category, which is
more suitable for larger data sets. We cannot observe the
performance of this technique on large test case sets for the
time being. In the future, we need to expand the test case set



size to provide credible large-scale datasets for similar research
work in test case classification.

Second, although this technique outperforms the rest of the
models, such as SVM, DBM, etc., in the case of a small
number of classified data in the dataset, the classifier accuracy
still needs to be improved. In this paper, a category label
review mechanism is introduced at the framework level to
provide positive input feedback for the classifier’s training.
However, there is still a need to improve the algorithm for the
collection of category lexicons at the algorithmic level. Based
on experimental observations, there are often some of the same
keywords collected from different categories in different types
of lexicons, which are given higher attention weights when
the test case classification model predicts different categories,
and thus belong to the public cross-words between categories.
In future work, we hope to avoid the misleading role of these
words in the lexicon word matching mechanism by building a
public thesaurus to collect keywords that occur frequently in
each category and excluding words from the public lexicon in
the word matching process.

Finally, the framework needs to train separate classifiers for
each test case set of different topics. We still have not found a
way to accurately classify all test cases using a single classifier.
A follow-up idea could be to cluster or classify the test case
sets, and a standard classifier could be trained for similar case
sets.

VIII. CONCLUSION

This paper proposes a test case classification framework
based on Few-shot Learning. We use this algorithm to filter
test cases, extract test case-related information, augment them,
and then perform text processing and vectorization. After that,
we introduced an attention mechanism on the BiLSTM model
to construct a category lexicon of test cases and obtain the
classification of test cases. Constructing the category lexicon
of test cases can help iteratively train the model and obtain
higher accuracy. We constructed a dataset consisting of three
crowdsourced test projects with thousands of test cases. We
also used this dataset for comparison experiments, which
proved that our algorithm has a 5%-25% improvement in
accuracy compared to existing algorithms. Also, with a control
group, we verified that the category labels generated using the
classification framework could help testers effectively improve
their testing efficiency.Using our framework can better solve
the problem of classifying the many test cases obtained from
crowdsourcing tests and reduce the manual workload.
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